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ABSTRACT
Cyber-physical systems have become a main technology driver for
our intelligent society. However, almost all cyber-physical systems
rely on battery-powered devices to function, which suffer from high
maintenance cost for recharging/replacing the batteries and bring
in negative environmental impacts due to the hazardous chemicals
used in the batteries. To address this challenge, a new computing
paradigm called intermittent computing (IC) was proposed which
advocates a battery-free design where cyber-physical devices can
be completely powered by energy scavenged from ambient sources
such as sunlight, radio waves, and vibrations. Since its advent, many
efforts have been made on addressing the challenges in IC, from the
hardware to the software stack. In this vision paper, we make a brief
summary of existing works on IC and discuss a more realistic setup
where, instead of focusing on one IC node as done in most existing
works, we propose to build a self-sustainable cyber-physical system
through the collaboration of distributed IC devices—collaborative
intermittent computing (CIC). We discuss the challenges in CIC
and provide a vision for the future cyber-physical systems.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems;Dependable and fault-tolerant systems and
networks.
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1 INTRODUCTION
Cyber-physical system has shown its great potential in enabling
an intelligent society with applications in numerous domains, in-
cluding environment monitoring [36], healthcare [17, 31, 37], smart
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buildings [44], and even earth observation in Outerspace [5]. In gen-
eral, cyber-physical applications follow a paradigm called sensing-
processing-actuation [15]. More specifically, these applications de-
ploy sensors to collect information further processed by a pro-
cessing unit on-site or in a remote cloud. Based on the processing
results, embedded devices perform actuation to react to the sensed
information. In large-scale cyber-physical system deployments,
sensors/actuators typically disperse geographically, powered by
batteries.

With the rapid adoption of the cyber-physical system in many
domains, it starts to show clear limitations due to its dependence
on the battery [8]. The reason is mainly three-fold: (1) Batteries are
typically bulky, hampering sensor miniaturization and increasing
deployment difficulties of cyber-physical systems. In most cyber-
physical scenarios, portability is the key to adoption, which is bot-
tlenecked by the battery’s size. (2) Batteries need to be recharged
when dead and replaced when worn out, leading to escalated main-
tenance costs. In large-scale cyber-physical system deployment, it
takes a considerable effort to access all the cyber-physical devices
once deployed, e.g., sensors for monitoring large infrastructures—
like buildings or bridges—built with concrete. (3) Batteries contain
hazardous chemicals, and using batteries in every cyber-physical
system deployment ubiquitously leads to adverse environmental
effects.

Researchers have tried to leverage energy harvesting technolo-
gies to overcome these battery-induced limitations, i.e., scavenging
electricity from ambient energy sources such as sunlight, electro-
magnetic waves, heat, or vibrations [32]. The main advantage of
energy harvesting is that the considered energy sources are clean
and cost-efficient. Cyber-physical devices collect energy from the
aforementioned ambient sources and store the energy in a capacitor
with energy harvesting. Once the stored energy in the capacitor
reaches a certain threshold, the cyber-physical device will be woken
up and operate using the stored energy. As a result, the collected en-
ergy drains gradually. When the collected energy is exhausted, the
operation pauses, and the capacitor starts recharging. Without the
battery’s involvement, cyber-physical devices can last indefinitely,
except for hardware failures in theory.

One of the main challenges in cyber-physical systems based on
energy harvesting is intermittency, i.e., ambient energy sources can
only provide limited electricity and are not always stable. As de-
scribed above, cyber-physical devices are only active when enough
energy has been scavenged and are completely off when the energy
is exhausted before the capacitor is recharged to a sufficient level.
Nevertheless, these cyber-physical devices are expected to perform
normal sensing-processing-actuation activities. This phenomenon
leads to the so-called “Sisyphean” phenomenon, resulting in a set
of unique challenges to the cyber-physical system design.
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Figure 1: Overviewof the intermittent computing landscape.

The cyber-physical paradigm under such intermittency is typi-
cally referred to as “intermittent computing (IC)” where computing
on cyber-physical devices happens intermittently to complete a
given cyber-physical task [6, 7, 25, 35]. IC devices are fundamen-
tally different from traditional wireless sensor networks since they
typically rely on unreliable ambient energy to function. Intermit-
tent computing has been studied in various aspects, ranging from
hardware [26], over software [23, 45, 49], to applications. How-
ever, existing efforts mainly focus on a single cyber-physical de-
vice that fits only limited scenarios. We argue that “intermittent
computing” is a crucial enabler to building future self-sustainable
cyber-physical systems. Such self-sustainable cyber-physical sys-
tems, once deployed, can run indefinitely without the need for any
human maintenance and are completely environment-friendly.

To this end, we propose the concept of collaborative intermittent
computing (CIC) for cyber-physical systems. CIC builds on top of
recent advancements in intermittent computing, including support
from hardware, operating systems, programming languages (PL),
and runtime environments. Most importantly, CIC goes beyond
a single cyber-physical device and advocates a distributed system
design where multiple intermittent cyber-physical devices collabo-
rate to perform non-interruptive, reliable computations transpar-
ently. Such a distributed system requires coordinating the energy-
harvesting, computation, and communication activities on all the
involved cyber-physical devices by reconciling the duty cycles of
these devices. To the best of our knowledge, this is still an open
research challenge.

In this vision paper, we present a systematic study of intermittent
computing (Section 2) and discuss themain open challenges towards
the CIC’s full vision (Section 3).

2 STATE-OF-THE-ART
Recently, intermittent computing has attracted tremendous interest.
So far, most of the existing works focus on hardware and software
support for a single intermittent cyber-physical device. A high-
level overview of the current landscape of intermittent computing
is shown in Figure 1. In the following, we summarize these devel-
opments across the landscape.

2.1 Hardware
The hardware of an intermittent computing (IC) system, which
is essential to support an IC system’s functionalities with energy

efficiency, typically includes energy-harvesting devices, microcon-
troller units (MCUs) with memory and clocks, communication units,
and other peripherals like sensors. Energy-harvesting devices are re-
sponsible for energy collection and storage for the IC system, which
then supply power to the whole system. For example, Flicker is a
batteryless platform that supports energy harvesting from multiple
energy sources including radio waves, sunlight, and kinesis [22].
Energy storage in IC systems is typically achieved by employing
capacitors. Instead of using fixed-size capacitors, Capybara pro-
vides an interface for programmers to reconfigure the hardware
energy capacitor to reconcile the energy demand of capacity- and
temporally-constrained tasks in the same application [14].

MCUs provide computing capabilities for coordination and data
processing in the IC system and they are more energy-efficient
than regular CPUs in general. To mitigate the limited processing
capability of MCUs, some IC systems, e.g., SONIC [19], are also
equipped with hardware accelerators for performing complex com-
putations like deep neural network (DNN) inference. MCUs used
in IC systems need to be equipped with non-volatile memories
like ferroelectric random access memories (FRAMs) to persist sys-
tem states. While being more energy-efficient, FRAMs typically
have lower access speeds than SRAMs, leading to worse perfor-
mance. Therefore, IC systems typically adopt a hybrid design by
combining FRAMs and SRAMs to balance energy efficiency and
performance [26]. MANIC further optimizes memory efficiency
by leveraging caches thus reducing the time and energy used for
memory accesses [20]. Another critical hardware challenge for IC
systems is robust timekeeping during power outages, which is es-
sential for tasks such as synchronization and real-time operations.
In an intermittent environment, on-chip digital timers are not ca-
pable of surviving power outages. Special designs are needed, e.g.,
CHRT proposes a multi-tier timekeeper architecture by employing
a series of coupled capacitor-resistor circuits [16].

Communication units are required for an IC system to exchange
information and perform coordination with others IC systems
or platforms. However, communication is an energy-consuming
task with radio signals. Alternative approaches include ambient
backscatter which modulates ambient electromagnetic signals to
encode information for communication [33] and visible light com-
munication which leverages visible light instead of electromagnetic
signals for communication. Depending on the application scenario,
IC systems can also be equipped with other peripherals like tem-
perature/humidity sensors. One critical challenge in supporting
these peripherals is to retrieve the state of these peripherals after
power outages and ensure state consistency. Samoyed targets this
problem and introduces Just-In-Time checkpointing for the execu-
tion of peripheral operations [39]. Overall, hardware support for IC
systems has been extensively explored in the literature and this lays
a solid foundation for our vision of CIC—building a self-sustainable
distributed computing platform out of IC systems.

2.2 Operating Systems
The operating system (OS) serves as a bridge between the hardware
and application software. The OS for an IC system is responsible for
providing functionalities including memory management, power
management, task scheduling, and providing APIs for application
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development. Many of these tasks are similar to the ones supported
by other wireless sensor OSes such as TinyOS and Contiki, but the
intermittent nature of IC systems brings some additional challenges
which manifest in the following aspects: (1) Memory management
for IC systems should handle the memory allocation for applica-
tions on both the volatile and non-volatile memories at runtime.
The coordination between the two types of memories is particularly
important for avoiding data inconsistency and loss during power
failures. DINO [34] provides a management solution for IC systems
that aims to guarantee memory consistency between the two types
of memories. Momentos enables automatic, energy-aware state
checkpointing to non-volatile memories for transiently powered
devices such as RFID tags [45]. SONIC targets deep neural network
inference and proposes a new technique called loop continuation
which can guarantee program correctness at power failures with
low overhead for inference workloads. (2) To support peripherals,
the OS of an IC system needs to preserve the state of these periph-
erals in non-volatile memories as done in Sytare [9]. The state can
be recovered later when enough energy has been harvested and the
activities on the peripherals can continue as if there were no inter-
ruptions [3, 11]. (3) Another important feature that the OS of an IC
system has to support is to ensure responsiveness to time-sensitive
tasks. This is typically achieved via new programming models and
runtime, which will be further discussed in the next section [40, 51].
So far, all the existing OS solutions are focused on single IC nodes.
OS support for CIC in a distributed setting is limited.

2.3 Programming Environments and Tools
Ideally, IC systems should be able to run legacy code developed for
battery-powered sensor systems directly, simplifying the develop-
ment and deployment costs. This requires support from program-
ming languages, programmingmodels, compilers, and libraries. The
de facto programming language for IC systems is the C language
(and its variants) mainly due to its support for low-level operations
and high efficiency. For example, Mayfly is a language and runtime
built on top of embedded-C for timely execution of sensing code
in IC environments [23]. BFree provides a power failure resilience
version of Python to simplify the programming of IC systems [27].
New programming models for IC systems have also been explored,
e.g., to support timely execution of time-sensitive code. InK intro-
duces an event-driven programming model for IC and proposes a
reactive runtime system featuring preemptive scheduling to ensure
power failure resilience [51]. Coati adopts a task-based interface
for synchronous computations and an event-based interface for
asynchronous interrupts [46]. CatNap is a similar system that uses
a new programming model to allow programmers to flag partial
code as time-critical and reserves energy for the reliable execution
of such code while deferring the rest of the code [40]. To ensure
forward progress and correctness of program execution, it is critical
to recovering the program state (including registers and memory
space) after power failures. This is typically done with the compil-
ers and there are generally two approaches: (1) checkpointing-based
where the compiler can automatically insert checkpoints in the
program [10, 28, 38, 49] and (2) task-based where the compiler auto-
matically divides the executable code into idempotent tasks that are
free from consistency concerns [34]. Various reusable libraries have

also been developed for simplifying the development of IC applica-
tions. For example, Chain [13] provides libraries for data encryption
and compression. An analysis of the theoretical foundation for IC
systems can be found in [47].

Development tools, like debuggers and emulators, have also
been explored for IC systems. For example, EKHO [21] supports
to simulate realistic energy conditions, which helps researchers
or developers observe system behaviors under controlled environ-
ments. SIREN [18] simulates the runtime energy conditions at the
instruction level, which is useful for debugging the code. An ideal
IC system debugging tool, like Colin [12], should be able to support
the check-off program error status without affecting the energy
state of the IC system. ScEpTic adopts program analysis to find bugs
and hidden anomalies in IC programs [41, 42]. Nevertheless, these
tools are usually still limited to specific conditions, e.g., specific OS
and libraries.

2.4 Applications
The application landscape of IC systems is overall limited so far. The
following applications have been considered in the literature: com-
munication, monitoring, medical care, and some modern machine
learning-based application like voice recognition. Battery-free cell-
phones harvest energy from light and radio frequency signals and
enable cellular communications [48]. IC systems have also been
used in monitoring the health condition of buildings or other infras-
tructures. One example is the application for monitoring UNESCO-
protected underground archaeological sites with IC devices collect-
ing energy from thermal and kinetic sources [1]. With implanted IC
devices that harvest energy from body movement or body thermal,
the health condition of patients can be monitored [31]. Modern
applications such as voice control have also been explored which
leverage machine learning inference [19, 28, 50]. So far, almost
all these applications are limited to one single IC device, without
considering the collaboration among multiple IC devices. This can
be attributed to the fact that communication primitives for IC sys-
tems are not mature yet. We will discuss further details in the next
section.

3 VISION
In this section, we present our vision for future cyber-physical
systems—achieving self-sustainability based on collaborative inter-
mittent computing (CIC). Figure 2 provides an overview of CIC.
We discuss the challenges in achieving the CIC vision from three
aspects: hardware, systems software, and applications. These as-
pects need to be fully integrated in order to build a self-sustainable
cyber-physical system.

3.1 Hardware
While tremendous efforts have been made in hardware support
for IC systems, current IC systems are still capability limited with
respect to both computing and communication. To support more
(sophisticated) applications, it is desirable to have more powerful
yet energy-efficient MCUs and memories, as well as capacitors
with higher capacities to preserve more energy. Given the same
physical situation, more energy-efficient MCUs can last longer,
thus providing more opportunities for reliable computing in a CIC
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Figure 2: An overview of a self-sustainable cyber-physical
system based on collaborative intermittent computing.

system. We expect more developments will be carried out in these
areas in the coming years so that more capable IC devices can
be built with modern hardware. Eventually, these IC devices are
powerful enough for us to build a distributed CIC system on top of
them. Yet, it is important to answer the question: How to make the
CIC software system be able to adapt to the continuous evolvement
of hardware devices?

3.2 Systems Software
The essential support for CIC comes from the systems software
including both the OS and distributed middleware coordinating a
set of IC devices. On top of the CIC middleware, cyber-physical
applications can be built without the concern of intermittency in
the system.

Operating system. Apart from all the support required for single
IC devices as discussed in Section 2.2, nodes in a CIC system have
also to deal with inter-node communication so that multiple nodes
can exchange information and collaborate on sensing or computing.
However, achieving efficient communication is challenging due to
the fact that communication is an expensive task on IC devices.
In addition, current support for communication in IC systems is
rather limited where the implementation of a power failure resilient
networking stack on IC systems is still completely missing. In a
CIC system, communication can happen with different paradigms
including unicast, multicast, or even broadcast, each of which has
different energy requirements. The CIC system will need to figure
out the best communication paradigm for each communication task
and make a decision at runtime based also on the energy status
on the IC device. There could also be different communication
media available on IC devices, e.g., Bluetooth, visible light, or even
backscatter [33]. Each of them provides different tradeoffs between
performance and energy efficiency. The research questions include:
(1) How to achieve reliable communication among IC devices? (2)
How to select the most energy-efficient communication paradigm
for a target application?

CIC middleware. With communication and networking enabled
on individual IC devices, we can push for a middleware on top of a
set of IC devices so that we can build a CIC distributed systems. This
middleware takes care of coordinating the IC devices within such
a system and ensuring the correct execution of distributed cyber-
physical applications deployed on such a system. The IC devices in

Figure 3: An overview of CIC applications covering under-
water, ocean, land, sky, and outer space scenarios.

such a system may have different roles—some are responsible for
sensing, while others are responsible for storing or processing the
data. It can also be that all the IC devices play the same role and the
CIC system achieves better reliability by leveraging these devices
collaboratively. A recent work has explored asynchronous duty
cycles for reliable sensing with multiple IC devices, but unlike our
CIC vision this is done without any proactive coordination of the IC
devices [43]. On top of the CIC middleware, high-level distributed
programming models are required to program such a CIC system.
The following research questions need to be examined carefully:
(1) How to achieve reliable computing with unreliable IC devices?
(2) What programming models are suitable for programming cyber-
physical applications in the CIC environment?

Security. A durable system must guarantee data privacy and se-
curity. In wild environments, data is easier to be spoofed, erased,
and modified [2, 24, 29]. It is thus desirable to find a way to apply
modern security technologies to CIC systems since data consistency
and confidentiality are the premises of deploying sensitive applica-
tions. The main challenge is that security measures are typically
expensive to implement on IC devices [4] while understanding the
new attack tactics in the CIC system is also not easy. The following
questions need to be explored: (1) What are the possible security
vulnerabilities in CIC systems? (2) How to develop lightweight
mechanisms to mitigate possible attacks in a CIC system?

3.3 Applications
Overall, CIC has a promising application perspective. Figure 3 de-
picts an overview of potential CIC applications, covering the fol-
lowing scenarios: underwater, ocean, land, sky, and outer space.
There are application-specific challenges that come from the envi-
ronmental condition of the application. For example, it is difficult
to collect energy and communicate in an underwater CIC system
since water has a negative effect on the propagation of electro-
magnetic waves due to increased attenuation. Furthermore, CIC
systems may fulfill the following functionalities: learning and in-
ference, interconnection to other systems, and interaction with
humans.

Future IC systems require every IC device to have learning and
inference abilities. To this end, machine learning models need to
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be deployed on IC devices. This requires us to solve the following
main issues: (1) How to design lightweight machine learning (or
deep learning) algorithms that can adapt to CIC environments. It
is known that machine learning algorithms typically require in-
tensive computation. Several attempts have been made towards
this direction [19, 30, 50]. (2) How to store the training data and
machine learning model with limited memory on IC devices? Ma-
chine learning algorithms need abundant data to train their model
to achieve high accuracy. Achieving such training activities on a
CIC system is nontrivial since the data and the machine learning
model has to be stored on multiple IC devices to ensure availability,
but this introduces issues on data consistency over the involved IC
devices.

4 CONCLUSION
To summarize, this paper provides a brief survey on IC systems,
illustrating the recent research progress in the IC field, the research
challenges, and its significance in cyber-physical systems. This pa-
per also depicts a vision of self-sustainable cyber-physical systems
based on collaborative intermittent computing and discusses the
challenges in achieving such a vision.
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