
Self-Sustainable Cyber-Physical Systems with Collaborative
Intermittent Computing

Gaosheng Liu
Vrije Universiteit Amsterdam

g.s.liu@vu.nl

Lin Wang
Vrije Universiteit Amsterdam and TU Darmstadt

lin.wang@vu.nl

ABSTRACT
Cyber-physical systems have become a main technology driver for
our intelligent society. However, almost all cyber-physical systems
rely on battery-powered devices to function, which suffer from high
maintenance cost for recharging/replacing the batteries and bring
in negative environmental impacts due to the hazardous chemicals
used in the batteries. To address this challenge, a new computing
paradigm called intermittent computing (IC) was proposed which
advocates a battery-free design where cyber-physical devices can
be completely powered by energy scavenged from ambient sources
such as sunlight, radio waves, and vibrations. Since its advent, many
efforts have been made on addressing the challenges in IC, from the
hardware to the software stack. In this vision paper, we make a brief
summary of existing works on IC and discuss a more realistic setup
where, instead of focusing on one IC node as done in most existing
works, we propose to build a self-sustainable cyber-physical system
through the collaboration of distributed IC devices—collaborative
intermittent computing (CIC). We discuss the challenges in CIC
and provide a vision for the future cyber-physical systems.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems;Dependable and fault-tolerant systems and
networks.

KEYWORDS
Intermittent computing, cyber-physical systems, energy harvesting,
low-power sensing and computing

ACM Reference Format:
Gaosheng Liu and Lin Wang. 2021. Self-Sustainable Cyber-Physical Sys-
tems with Collaborative Intermittent Computing. In The Twelfth ACM In-
ternational Conference on Future Energy Systems (e-Energy ’21), June 28-
July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3447555.3465324

1 INTRODUCTION
Cyber-physical system has shown its great potential in enabling
an intelligent society with applications in numerous domains, in-
cluding environment monitoring [36], healthcare [17, 31, 37], smart

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8333-2/21/06.
https://doi.org/10.1145/3447555.3465324

buildings [44], and even earth observation in Outerspace [5]. In gen-
eral, cyber-physical applications follow a paradigm called sensing-
processing-actuation [15]. More specifically, these applications de-
ploy sensors to collect information further processed by a pro-
cessing unit on-site or in a remote cloud. Based on the processing
results, embedded devices perform actuation to react to the sensed
information. In large-scale cyber-physical system deployments,
sensors/actuators typically disperse geographically, powered by
batteries.

With the rapid adoption of the cyber-physical system in many
domains, it starts to show clear limitations due to its dependence
on the battery [8]. The reason is mainly three-fold: (1) Batteries are
typically bulky, hampering sensor miniaturization and increasing
deployment difficulties of cyber-physical systems. In most cyber-
physical scenarios, portability is the key to adoption, which is bot-
tlenecked by the battery’s size. (2) Batteries need to be recharged
when dead and replaced when worn out, leading to escalated main-
tenance costs. In large-scale cyber-physical system deployment, it
takes a considerable effort to access all the cyber-physical devices
once deployed, e.g., sensors for monitoring large infrastructures—
like buildings or bridges—built with concrete. (3) Batteries contain
hazardous chemicals, and using batteries in every cyber-physical
system deployment ubiquitously leads to adverse environmental
effects.

Researchers have tried to leverage energy harvesting technolo-
gies to overcome these battery-induced limitations, i.e., scavenging
electricity from ambient energy sources such as sunlight, electro-
magnetic waves, heat, or vibrations [32]. The main advantage of
energy harvesting is that the considered energy sources are clean
and cost-efficient. Cyber-physical devices collect energy from the
aforementioned ambient sources and store the energy in a capacitor
with energy harvesting. Once the stored energy in the capacitor
reaches a certain threshold, the cyber-physical device will be woken
up and operate using the stored energy. As a result, the collected en-
ergy drains gradually. When the collected energy is exhausted, the
operation pauses, and the capacitor starts recharging. Without the
battery’s involvement, cyber-physical devices can last indefinitely,
except for hardware failures in theory.

One of the main challenges in cyber-physical systems based on
energy harvesting is intermittency, i.e., ambient energy sources can
only provide limited electricity and are not always stable. As de-
scribed above, cyber-physical devices are only active when enough
energy has been scavenged and are completely off when the energy
is exhausted before the capacitor is recharged to a sufficient level.
Nevertheless, these cyber-physical devices are expected to perform
normal sensing-processing-actuation activities. This phenomenon
leads to the so-called “Sisyphean” phenomenon, resulting in a set
of unique challenges to the cyber-physical system design.

https://doi.org/10.1145/3447555.3465324
https://doi.org/10.1145/3447555.3465324
https://doi.org/10.1145/3447555.3465324


e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Gaosheng Liu and Lin Wang

Figure 1: Overviewof the intermittent computing landscape.

The cyber-physical paradigm under such intermittency is typi-
cally referred to as “intermittent computing (IC)” where computing
on cyber-physical devices happens intermittently to complete a
given cyber-physical task [6, 7, 25, 35]. IC devices are fundamen-
tally different from traditional wireless sensor networks since they
typically rely on unreliable ambient energy to function. Intermit-
tent computing has been studied in various aspects, ranging from
hardware [26], over software [23, 45, 49], to applications. How-
ever, existing efforts mainly focus on a single cyber-physical de-
vice that fits only limited scenarios. We argue that “intermittent
computing” is a crucial enabler to building future self-sustainable
cyber-physical systems. Such self-sustainable cyber-physical sys-
tems, once deployed, can run indefinitely without the need for any
human maintenance and are completely environment-friendly.

To this end, we propose the concept of collaborative intermittent
computing (CIC) for cyber-physical systems. CIC builds on top of
recent advancements in intermittent computing, including support
from hardware, operating systems, programming languages (PL),
and runtime environments. Most importantly, CIC goes beyond
a single cyber-physical device and advocates a distributed system
design where multiple intermittent cyber-physical devices collabo-
rate to perform non-interruptive, reliable computations transpar-
ently. Such a distributed system requires coordinating the energy-
harvesting, computation, and communication activities on all the
involved cyber-physical devices by reconciling the duty cycles of
these devices. To the best of our knowledge, this is still an open
research challenge.

In this vision paper, we present a systematic study of intermittent
computing (Section 2) and discuss themain open challenges towards
the CIC’s full vision (Section 3).

2 STATE-OF-THE-ART
Recently, intermittent computing has attracted tremendous interest.
So far, most of the existing works focus on hardware and software
support for a single intermittent cyber-physical device. A high-
level overview of the current landscape of intermittent computing
is shown in Figure 1. In the following, we summarize these devel-
opments across the landscape.

2.1 Hardware
The hardware of an intermittent computing (IC) system, which
is essential to support an IC system’s functionalities with energy

efficiency, typically includes energy-harvesting devices, microcon-
troller units (MCUs) with memory and clocks, communication units,
and other peripherals like sensors. Energy-harvesting devices are re-
sponsible for energy collection and storage for the IC system, which
then supply power to the whole system. For example, Flicker is a
batteryless platform that supports energy harvesting from multiple
energy sources including radio waves, sunlight, and kinesis [22].
Energy storage in IC systems is typically achieved by employing
capacitors. Instead of using fixed-size capacitors, Capybara pro-
vides an interface for programmers to reconfigure the hardware
energy capacitor to reconcile the energy demand of capacity- and
temporally-constrained tasks in the same application [14].

MCUs provide computing capabilities for coordination and data
processing in the IC system and they are more energy-efficient
than regular CPUs in general. To mitigate the limited processing
capability of MCUs, some IC systems, e.g., SONIC [19], are also
equipped with hardware accelerators for performing complex com-
putations like deep neural network (DNN) inference. MCUs used
in IC systems need to be equipped with non-volatile memories
like ferroelectric random access memories (FRAMs) to persist sys-
tem states. While being more energy-efficient, FRAMs typically
have lower access speeds than SRAMs, leading to worse perfor-
mance. Therefore, IC systems typically adopt a hybrid design by
combining FRAMs and SRAMs to balance energy efficiency and
performance [26]. MANIC further optimizes memory efficiency
by leveraging caches thus reducing the time and energy used for
memory accesses [20]. Another critical hardware challenge for IC
systems is robust timekeeping during power outages, which is es-
sential for tasks such as synchronization and real-time operations.
In an intermittent environment, on-chip digital timers are not ca-
pable of surviving power outages. Special designs are needed, e.g.,
CHRT proposes a multi-tier timekeeper architecture by employing
a series of coupled capacitor-resistor circuits [16].

Communication units are required for an IC system to exchange
information and perform coordination with others IC systems
or platforms. However, communication is an energy-consuming
task with radio signals. Alternative approaches include ambient
backscatter which modulates ambient electromagnetic signals to
encode information for communication [33] and visible light com-
munication which leverages visible light instead of electromagnetic
signals for communication. Depending on the application scenario,
IC systems can also be equipped with other peripherals like tem-
perature/humidity sensors. One critical challenge in supporting
these peripherals is to retrieve the state of these peripherals after
power outages and ensure state consistency. Samoyed targets this
problem and introduces Just-In-Time checkpointing for the execu-
tion of peripheral operations [39]. Overall, hardware support for IC
systems has been extensively explored in the literature and this lays
a solid foundation for our vision of CIC—building a self-sustainable
distributed computing platform out of IC systems.

2.2 Operating Systems
The operating system (OS) serves as a bridge between the hardware
and application software. The OS for an IC system is responsible for
providing functionalities including memory management, power
management, task scheduling, and providing APIs for application



e-Energy’21 <WEEE> e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

development. Many of these tasks are similar to the ones supported
by other wireless sensor OSes such as TinyOS and Contiki, but the
intermittent nature of IC systems brings some additional challenges
which manifest in the following aspects: (1) Memory management
for IC systems should handle the memory allocation for applica-
tions on both the volatile and non-volatile memories at runtime.
The coordination between the two types of memories is particularly
important for avoiding data inconsistency and loss during power
failures. DINO [34] provides a management solution for IC systems
that aims to guarantee memory consistency between the two types
of memories. Momentos enables automatic, energy-aware state
checkpointing to non-volatile memories for transiently powered
devices such as RFID tags [45]. SONIC targets deep neural network
inference and proposes a new technique called loop continuation
which can guarantee program correctness at power failures with
low overhead for inference workloads. (2) To support peripherals,
the OS of an IC system needs to preserve the state of these periph-
erals in non-volatile memories as done in Sytare [9]. The state can
be recovered later when enough energy has been harvested and the
activities on the peripherals can continue as if there were no inter-
ruptions [3, 11]. (3) Another important feature that the OS of an IC
system has to support is to ensure responsiveness to time-sensitive
tasks. This is typically achieved via new programming models and
runtime, which will be further discussed in the next section [40, 51].
So far, all the existing OS solutions are focused on single IC nodes.
OS support for CIC in a distributed setting is limited.

2.3 Programming Environments and Tools
Ideally, IC systems should be able to run legacy code developed for
battery-powered sensor systems directly, simplifying the develop-
ment and deployment costs. This requires support from program-
ming languages, programmingmodels, compilers, and libraries. The
de facto programming language for IC systems is the C language
(and its variants) mainly due to its support for low-level operations
and high efficiency. For example, Mayfly is a language and runtime
built on top of embedded-C for timely execution of sensing code
in IC environments [23]. BFree provides a power failure resilience
version of Python to simplify the programming of IC systems [27].
New programming models for IC systems have also been explored,
e.g., to support timely execution of time-sensitive code. InK intro-
duces an event-driven programming model for IC and proposes a
reactive runtime system featuring preemptive scheduling to ensure
power failure resilience [51]. Coati adopts a task-based interface
for synchronous computations and an event-based interface for
asynchronous interrupts [46]. CatNap is a similar system that uses
a new programming model to allow programmers to flag partial
code as time-critical and reserves energy for the reliable execution
of such code while deferring the rest of the code [40]. To ensure
forward progress and correctness of program execution, it is critical
to recovering the program state (including registers and memory
space) after power failures. This is typically done with the compil-
ers and there are generally two approaches: (1) checkpointing-based
where the compiler can automatically insert checkpoints in the
program [10, 28, 38, 49] and (2) task-based where the compiler auto-
matically divides the executable code into idempotent tasks that are
free from consistency concerns [34]. Various reusable libraries have

also been developed for simplifying the development of IC applica-
tions. For example, Chain [13] provides libraries for data encryption
and compression. An analysis of the theoretical foundation for IC
systems can be found in [47].

Development tools, like debuggers and emulators, have also
been explored for IC systems. For example, EKHO [21] supports
to simulate realistic energy conditions, which helps researchers
or developers observe system behaviors under controlled environ-
ments. SIREN [18] simulates the runtime energy conditions at the
instruction level, which is useful for debugging the code. An ideal
IC system debugging tool, like Colin [12], should be able to support
the check-off program error status without affecting the energy
state of the IC system. ScEpTic adopts program analysis to find bugs
and hidden anomalies in IC programs [41, 42]. Nevertheless, these
tools are usually still limited to specific conditions, e.g., specific OS
and libraries.

2.4 Applications
The application landscape of IC systems is overall limited so far. The
following applications have been considered in the literature: com-
munication, monitoring, medical care, and some modern machine
learning-based application like voice recognition. Battery-free cell-
phones harvest energy from light and radio frequency signals and
enable cellular communications [48]. IC systems have also been
used in monitoring the health condition of buildings or other infras-
tructures. One example is the application for monitoring UNESCO-
protected underground archaeological sites with IC devices collect-
ing energy from thermal and kinetic sources [1]. With implanted IC
devices that harvest energy from body movement or body thermal,
the health condition of patients can be monitored [31]. Modern
applications such as voice control have also been explored which
leverage machine learning inference [19, 28, 50]. So far, almost
all these applications are limited to one single IC device, without
considering the collaboration among multiple IC devices. This can
be attributed to the fact that communication primitives for IC sys-
tems are not mature yet. We will discuss further details in the next
section.

3 VISION
In this section, we present our vision for future cyber-physical
systems—achieving self-sustainability based on collaborative inter-
mittent computing (CIC). Figure 2 provides an overview of CIC.
We discuss the challenges in achieving the CIC vision from three
aspects: hardware, systems software, and applications. These as-
pects need to be fully integrated in order to build a self-sustainable
cyber-physical system.

3.1 Hardware
While tremendous efforts have been made in hardware support
for IC systems, current IC systems are still capability limited with
respect to both computing and communication. To support more
(sophisticated) applications, it is desirable to have more powerful
yet energy-efficient MCUs and memories, as well as capacitors
with higher capacities to preserve more energy. Given the same
physical situation, more energy-efficient MCUs can last longer,
thus providing more opportunities for reliable computing in a CIC



e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Gaosheng Liu and Lin Wang

Network

Middleware

OS

OS

OS

Application A Application B

IC Device Hardware

Figure 2: An overview of a self-sustainable cyber-physical
system based on collaborative intermittent computing.

system. We expect more developments will be carried out in these
areas in the coming years so that more capable IC devices can
be built with modern hardware. Eventually, these IC devices are
powerful enough for us to build a distributed CIC system on top of
them. Yet, it is important to answer the question: How to make the
CIC software system be able to adapt to the continuous evolvement
of hardware devices?

3.2 Systems Software
The essential support for CIC comes from the systems software
including both the OS and distributed middleware coordinating a
set of IC devices. On top of the CIC middleware, cyber-physical
applications can be built without the concern of intermittency in
the system.

Operating system. Apart from all the support required for single
IC devices as discussed in Section 2.2, nodes in a CIC system have
also to deal with inter-node communication so that multiple nodes
can exchange information and collaborate on sensing or computing.
However, achieving efficient communication is challenging due to
the fact that communication is an expensive task on IC devices.
In addition, current support for communication in IC systems is
rather limited where the implementation of a power failure resilient
networking stack on IC systems is still completely missing. In a
CIC system, communication can happen with different paradigms
including unicast, multicast, or even broadcast, each of which has
different energy requirements. The CIC system will need to figure
out the best communication paradigm for each communication task
and make a decision at runtime based also on the energy status
on the IC device. There could also be different communication
media available on IC devices, e.g., Bluetooth, visible light, or even
backscatter [33]. Each of them provides different tradeoffs between
performance and energy efficiency. The research questions include:
(1) How to achieve reliable communication among IC devices? (2)
How to select the most energy-efficient communication paradigm
for a target application?

CIC middleware. With communication and networking enabled
on individual IC devices, we can push for a middleware on top of a
set of IC devices so that we can build a CIC distributed systems. This
middleware takes care of coordinating the IC devices within such
a system and ensuring the correct execution of distributed cyber-
physical applications deployed on such a system. The IC devices in

Figure 3: An overview of CIC applications covering under-
water, ocean, land, sky, and outer space scenarios.

such a system may have different roles—some are responsible for
sensing, while others are responsible for storing or processing the
data. It can also be that all the IC devices play the same role and the
CIC system achieves better reliability by leveraging these devices
collaboratively. A recent work has explored asynchronous duty
cycles for reliable sensing with multiple IC devices, but unlike our
CIC vision this is done without any proactive coordination of the IC
devices [43]. On top of the CIC middleware, high-level distributed
programming models are required to program such a CIC system.
The following research questions need to be examined carefully:
(1) How to achieve reliable computing with unreliable IC devices?
(2) What programming models are suitable for programming cyber-
physical applications in the CIC environment?

Security. A durable system must guarantee data privacy and se-
curity. In wild environments, data is easier to be spoofed, erased,
and modified [2, 24, 29]. It is thus desirable to find a way to apply
modern security technologies to CIC systems since data consistency
and confidentiality are the premises of deploying sensitive applica-
tions. The main challenge is that security measures are typically
expensive to implement on IC devices [4] while understanding the
new attack tactics in the CIC system is also not easy. The following
questions need to be explored: (1) What are the possible security
vulnerabilities in CIC systems? (2) How to develop lightweight
mechanisms to mitigate possible attacks in a CIC system?

3.3 Applications
Overall, CIC has a promising application perspective. Figure 3 de-
picts an overview of potential CIC applications, covering the fol-
lowing scenarios: underwater, ocean, land, sky, and outer space.
There are application-specific challenges that come from the envi-
ronmental condition of the application. For example, it is difficult
to collect energy and communicate in an underwater CIC system
since water has a negative effect on the propagation of electro-
magnetic waves due to increased attenuation. Furthermore, CIC
systems may fulfill the following functionalities: learning and in-
ference, interconnection to other systems, and interaction with
humans.

Future IC systems require every IC device to have learning and
inference abilities. To this end, machine learning models need to



e-Energy’21 <WEEE> e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

be deployed on IC devices. This requires us to solve the following
main issues: (1) How to design lightweight machine learning (or
deep learning) algorithms that can adapt to CIC environments. It
is known that machine learning algorithms typically require in-
tensive computation. Several attempts have been made towards
this direction [19, 30, 50]. (2) How to store the training data and
machine learning model with limited memory on IC devices? Ma-
chine learning algorithms need abundant data to train their model
to achieve high accuracy. Achieving such training activities on a
CIC system is nontrivial since the data and the machine learning
model has to be stored on multiple IC devices to ensure availability,
but this introduces issues on data consistency over the involved IC
devices.

4 CONCLUSION
To summarize, this paper provides a brief survey on IC systems,
illustrating the recent research progress in the IC field, the research
challenges, and its significance in cyber-physical systems. This pa-
per also depicts a vision of self-sustainable cyber-physical systems
based on collaborative intermittent computing and discusses the
challenges in achieving such a vision.

ACKNOWLEDGMENTS
This work has been partially funded by the German Research Foun-
dation (DFG) grant 392046569. Gaosheng Liu is funded by the China
Scholarship Council (CSC) fellowship.

REFERENCES
[1] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,

Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2020. Battery-less
zero-maintenance embedded sensing at the mithræum of circus maximus. In
SenSys ’20: The 18th ACM Conference on Embedded Networked Sensor Systems,
Virtual Event, Japan, November 16-19, 2020, Jin Nakazawa and Polly Huang (Eds.).
ACM, 368–381. https://doi.org/10.1145/3384419.3430722

[2] Omar Alfandi, Salam Ismail Rasheed Khanji, Liza Ahmad, and Asad Masood
Khattak. 2021. A survey on boosting IoT security and privacy through blockchain.
Clust. Comput. 24, 1, 37–55. https://doi.org/10.1007/s10586-020-03137-8

[3] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V. Merrett, and Alex S.
Weddell. 2018. RESTOP: Retaining External Peripheral State in Intermittently-
Powered Sensor Systems. Sensors 18, 1, 172. https://doi.org/10.3390/s18010172

[4] Hafiz Areeb Asad, Erik Henricus Wouters, Naveed Anwar Bhatti, Luca Mottola,
and Thiemo Voigt. 2020. On Securing Persistent State in Intermittent Computing.
In Proceedings of the 8th International Workshop on Energy Harvesting and Energy-
Neutral Sensing Systems (ENSsys ’20). Association for Computing Machinery, New
York, NY, USA, 8–14. https://doi.org/10.1145/3417308.3430267

[5] Justin Atchison and Mason Peck. 2007. A millimeter-scale lorentz-propelled
spacecraft. In AIAA Guidance, Navigation and Control Conference and Exhibit.
6847.

[6] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola,
Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca Benini. 2016.
Hibernus++: A Self-Calibrating and Adaptive System for Transiently-Powered
Embedded Devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 12,
1968–1980. https://doi.org/10.1109/TCAD.2016.2547919

[7] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,
Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation
During Intermittent Supply for Energy-Harvesting Systems. IEEE Embed. Syst.
Lett. 7, 1, 15–18. https://doi.org/10.1109/LES.2014.2371494

[8] Batteryproblems 2019. Overcoming the Battery Obstacle to Ubiquitous
Sensing-Finally. https://everactive-media.s3.amazonaws.com/content/
uploads/2019/06/17095844/Overcoming-the-Battery-Problem-to-Ubiquitous-
Sensing_Everactive_June-2019.pdf

[9] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and Guillaume
Salagnac. 2019. Sytare: A Lightweight Kernel for NVRAM-Based Transiently-
Powered Systems. IEEE Trans. Computers 68, 9, 1390–1403. https://doi.org/10.
1109/TC.2018.2889080

[10] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: efficient code instru-
mentation for transiently-powered embedded sensing. In Proceedings of the 16th
ACM/IEEE International Conference on Information Processing in Sensor Networks,
IPSN 2017, Pittsburgh, PA, USA, April 18-21, 2017, Pei Zhang, Prabal Dutta, and
Guoliang Xing (Eds.). ACM, 209–219. https://doi.org/10.1145/3055031.3055082

[11] Adriano Branco, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2019. Intermittent asynchronous peripheral operations. In Proceedings of
the 17th Conference on Embedded Networked Sensor Systems, SenSys 2019, New York,
NY, USA, November 10-13, 2019, Raghu K. Ganti, Xiaofan Fred Jiang, Gian Pietro
Picco, and Xia Zhou (Eds.). ACM, 55–67. https://doi.org/10.1145/3356250.3360033

[12] Alexei Colin, Graham Harvey, Alanson P. Sample, and Brandon Lucia. 2017. An
Energy-Aware Debugger for Intermittently Powered Systems. IEEE Micro 37, 3,
116–125. https://doi.org/10.1109/MM.2017.48

[13] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 514–530.
https://doi.org/10.1145/2983990.2983995

[14] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable En-
ergy Storage Architecture for Energy-harvesting Devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March
24-28, 2018, Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.).
ACM, 767–781. https://doi.org/10.1145/3173162.3173210

[15] Roshan Bharath Das, Marc X. Makkes, Alexandru Uta, Lin Wang, and Henri E.
Bal. 2019. Aves: A Decision Engine for Energy-efficient Stream Analytics across
Low-power Devices. In 2019 IEEE International Conference on Big Data (Big Data),
Los Angeles, CA, USA, December 9-12, 2019. IEEE, 441–448. https://doi.org/10.
1109/BigData47090.2019.9005607

[16] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemyslaw Pawel-
czak, and Josiah D. Hester. 2020. Reliable Timekeeping for Intermittent Comput-
ing. In ASPLOS ’20: Architectural Support for Programming Languages and Operat-
ing Systems, Lausanne, Switzerland, March 16-20, 2020, James R. Larus, Luis Ceze,
and Karin Strauss (Eds.). ACM, 53–67. https://doi.org/10.1145/3373376.3378464

[17] Saul Rodriguez Duenas, Stig Ollmar, Muhammad Waqar, and Ana Rusu. 2016. A
Batteryless Sensor ASIC for Implantable Bio-Impedance Applications. IEEE Trans.
Biomed. Circuits Syst. 10, 3, 533–544. https://doi.org/10.1109/TBCAS.2015.2456242

[18] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber. 2016. Realistic
simulation for tiny batteryless sensors. In Proceedings of the 4th International
Workshop on Energy Harvesting and Energy-Neutral Sensing Systems. Association
for Computing Machinery, 23–26. https://doi.org/10.1145/2996884.2996889

[19] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck
(Eds.). ACM, 199–213. https://doi.org/10.1145/3297858.3304011

[20] Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan
Beckmann, and Brandon Lucia. 2019. MANIC: A Vector-Dataflow Architecture
for Ultra-Low-Power Embedded Systems. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019. ACM, 670–684. https://doi.org/10.1145/3352460.
3358277

[21] Josiah D. Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: realistic and
repeatable experimentation for tiny energy-harvesting sensors. In Proceedings
of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14,
Memphis, Tennessee, USA, November 3-6, 2014, Ákos Lédeczi, Prabal Dutta, and
Chenyang Lu (Eds.). ACM, 1–15. https://doi.org/10.1145/2668332.2668336

[22] Josiah D. Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the
Batteryless Internet-of-Things. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, SenSys 2017, Delft, Netherlands, November
06-08, 2017, M. Rasit Eskicioglu (Ed.). ACM, 19:1–19:13. https://doi.org/10.1145/
3131672.3131674

[23] Josiah D. Hester, Kevin M. Storer, and Jacob Sorber. 2017. Timely Execution
on Intermittently Powered Batteryless Sensors. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, SenSys 2017, Delft, Netherlands,
November 06-08, 2017, M. Rasit Eskicioglu (Ed.). ACM, 17:1–17:13. https://doi.
org/10.1145/3131672.3131673

[24] Niccolò Izzo, Alessandro Barenghi, Luca Breveglieri, Gerardo Pelosi, and Paolo
Amato. 2019. A secure and authenticated host-to-memory communication
interface. In Proceedings of the 16th ACM International Conference on Com-
puting Frontiers, CF 2019, Alghero, Italy, April 30 - May 2, 2019, Francesca
Palumbo, Michela Becchi, Martin Schulz, and Kento Sato (Eds.). ACM, 386–391.
https://doi.org/10.1145/3310273.3323401

[25] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QUICKRE-
CALL: A Low Overhead HW/SW Approach for Enabling Computations across

https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1007/s10586-020-03137-8
https://doi.org/10.3390/s18010172
https://doi.org/10.1145/3417308.3430267
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://everactive-media.s3.amazonaws.com/content/uploads/2019/06/17095844/Overcoming-the-Battery-Problem-to-Ubiquitous-Sensing_Everactive_June-2019.pdf
https://everactive-media.s3.amazonaws.com/content/uploads/2019/06/17095844/Overcoming-the-Battery-Problem-to-Ubiquitous-Sensing_Everactive_June-2019.pdf
https://everactive-media.s3.amazonaws.com/content/uploads/2019/06/17095844/Overcoming-the-Battery-Problem-to-Ubiquitous-Sensing_Everactive_June-2019.pdf
https://doi.org/10.1109/TC.2018.2889080
https://doi.org/10.1109/TC.2018.2889080
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3356250.3360033
https://doi.org/10.1109/MM.2017.48
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/3173162.3173210
https://doi.org/10.1109/BigData47090.2019.9005607
https://doi.org/10.1109/BigData47090.2019.9005607
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1109/TBCAS.2015.2456242
https://doi.org/10.1145/2996884.2996889
https://doi.org/10.1145/3297858.3304011
https://doi.org/10.1145/3352460.3358277
https://doi.org/10.1145/3352460.3358277
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3310273.3323401


e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Gaosheng Liu and Lin Wang

Power Cycles in Transiently Powered Computers. In 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems, Mumbai, India, January 5-9, 2014. IEEE Computer Society, 330–335.
https://doi.org/10.1109/VLSID.2014.63

[26] Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan.
2017. Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in
Intermittently-Powered IoT Devices. ACM Trans. Embed. Comput. Syst. 16, 3,
65:1–65:23. https://doi.org/10.1145/2983628

[27] Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasim Sinan Yildirim, Przemyslaw
Pawelczak, and Josiah D. Hester. 2020. BFree: Enabling Battery-free Sensor
Prototyping with Python. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
4, 4, 135:1–135:39. https://doi.org/10.1145/3432191

[28] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah D. Hester,
and Przemyslaw Pawelczak. 2020. Time-sensitive Intermittent Computing Meets
Legacy Software. InASPLOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20, 2020, James R. Larus,
Luis Ceze, and Karin Strauss (Eds.). ACM, 85–99. https://doi.org/10.1145/3373376.
3378476

[29] Archanaa S. Krishnan and Patrick Schaumont. 2018. Exploiting Security Vulnera-
bilities in Intermittent Computing. In Security, Privacy, and Applied Cryptography
Engineering - 8th International Conference, SPACE 2018, Kanpur, India, December
15-19, 2018, Proceedings (Lecture Notes in Computer Science), Anupam Chattopad-
hyay, Chester Rebeiro, and Yuval Yarom (Eds.), Vol. 11348. Springer, 104–124.
https://doi.org/10.1007/978-3-030-05072-6_7

[30] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nirjon. 2019. Intermittent
Learning: On-Device Machine Learning on Intermittently Powered System. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4, 141:1–141:30. https:
//doi.org/10.1145/3369837

[31] Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong Kim, Inhee Lee, Prabal
Dutta, Dennis Sylvester, and David T. Blaauw. 2012. A modular 1mm3 die-
stacked sensing platform with optical communication and multi-modal energy
harvesting. In 2012 IEEE International Solid-State Circuits Conference, ISSCC 2012,
San Francisco, CA, USA, February 19-23, 2012. IEEE, 402–404. https://doi.org/10.
1109/ISSCC.2012.6177065

[32] Huicong Liu, Hailing Fu, Lining Sun, Chengkuo Lee, and Eric M Yeatman. [n.d.].
Hybrid energy harvesting technology: From materials, structural design, system
integration to applications. Renewable and Sustainable Energy Reviews, 110473.

[33] Vincent Liu, Aaron N. Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall,
and Joshua R. Smith. 2013. Ambient backscatter: wireless communication out of
thin air. In ACM SIGCOMM 2013 Conference, SIGCOMM 2013, Hong Kong, August
12-16, 2013, Dah Ming Chiu, Jia Wang, Paul Barford, and Srinivasan Seshan (Eds.).
ACM, 39–50. https://doi.org/10.1145/2486001.2486015

[34] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and
execution model for intermittent systems. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015, David Grove and Stephen M. Blackburn (Eds.). ACM,
575–585. https://doi.org/10.1145/2737924.2737978

[35] Dong Ma, Guohao Lan, Mahbub Hassan, Wen Hu, and Sajal K. Das. 2020. Sensing,
Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE
Commun. Surv. Tutorials 22, 2, 1222–1250. https://doi.org/10.1109/COMST.2019.
2962526

[36] Jun Ma, Hongzhi Yu, Yan Xu, and Kaiying Deng. 2020. CDAM: Conservative data
analytical model for dynamic climate information evaluation using intelligent
IoT environment - An application perspective. Comput. Commun. 150, 177–184.
https://doi.org/10.1016/j.comcom.2019.11.014

[37] Yunfei Ma, Zhihong Luo, Christoph Steiger, Giovanni Traverso, and Fadel Adib.
2018. Enabling deep-tissue networking for miniature medical devices. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018, Sergey Gorinsky and
János Tapolcai (Eds.). ACM, 417–431. https://doi.org/10.1145/3230543.3230566

[38] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing for
Safe Efficient Intermittent Computing. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association,
129–144. https://www.usenix.org/conference/osdi18/presentation/maeng

[39] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher
(Eds.). ACM, 1101–1116. https://doi.org/10.1145/3314221.3314613

[40] Kiwan Maeng and Brandon Lucia. 2020. Adaptive low-overhead scheduling
for periodic and reactive intermittent execution. In Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and
Emina Torlak (Eds.). ACM, 1005–1021. https://doi.org/10.1145/3385412.3385998

[41] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2019. On intermittence bugs in the battery-less internet of things (WIP

paper). In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, LCTES 2019, Phoenix,
AZ, USA, June 23-23, 2019, Jian-Jia Chen and Aviral Shrivastava (Eds.). ACM,
203–207. https://doi.org/10.1145/3316482.3326346

[42] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2021. Discovering the Hidden Anomalies of Intermittent Computing.
https://mottola.faculty.polimi.it/papers/maioli21discovering.pdf

[43] Amjad Yousef Majid, Patrick Schilder, and Koen Langendoen. 2020. Continuous
Sensing on Intermittent Power. In 19th ACM/IEEE International Conference on
Information Processing in Sensor Networks, IPSN 2020, Sydney, Australia, April
21-24, 2020. IEEE, 181–192. https://doi.org/10.1109/IPSN48710.2020.00-36

[44] George M. Milis, Christos G. Panayiotou, and Marios M. Polycarpou. 2021. IoT-
Enabled Automatic Synthesis of Distributed Feedback Control Schemes in Smart
Buildings. IEEE Internet Things J. 8, 4, 2615–2626. https://doi.org/10.1109/JIOT.
2020.3019662

[45] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: system support
for long-running computation on RFID-scale devices. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011,
Rajiv Gupta and Todd C. Mowry (Eds.). ACM, 159–170. https://doi.org/10.1145/
1950365.1950386

[46] Emily Ruppel and Brandon Lucia. 2019. Transactional concurrency control for
intermittent, energy-harvesting computing systems. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen
Fisher (Eds.). ACM, 1085–1100. https://doi.org/10.1145/3314221.3314583

[47] Milijana Surbatovich, Brandon Lucia, and Limin Jia. 2020. Towards a formal
foundation of intermittent computing. Proc. ACM Program. Lang. 4, OOPSLA,
163:1–163:31. https://doi.org/10.1145/3428231

[48] Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua R. Smith. 2017.
Battery-Free Cellphone. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1,
2, 25:1–25:20. https://doi.org/10.1145/3090090

[49] Joel van der Woude and Matthew Hicks. 2016. Intermittent Computation without
Hardware Support or Programmer Intervention. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Asso-
ciation, 17–32. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/vanderwoude

[50] Yawen Wu, Zhepeng Wang, Zhenge Jia, Yiyu Shi, and Jingtong Hu. 2020. Inter-
mittent Inference with Nonuniformly Compressed Multi-Exit Neural Network
for Energy Harvesting Powered Devices. In 57th ACM/IEEE Design Automa-
tion Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020. IEEE, 1–6.
https://doi.org/10.1109/DAC18072.2020.9218526

[51] Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah D. Hester. 2018. InK: Reactive Kernel for
Tiny Batteryless Sensors. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, SenSys 2018, Shenzhen, China, November 4-7, 2018,
Gowri Sankar Ramachandran and Bhaskar Krishnamachari (Eds.). ACM, 41–53.
https://doi.org/10.1145/3274783.3274837

https://doi.org/10.1109/VLSID.2014.63
https://doi.org/10.1145/2983628
https://doi.org/10.1145/3432191
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1007/978-3-030-05072-6_7
https://doi.org/10.1145/3369837
https://doi.org/10.1145/3369837
https://doi.org/10.1109/ISSCC.2012.6177065
https://doi.org/10.1109/ISSCC.2012.6177065
https://doi.org/10.1145/2486001.2486015
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1109/COMST.2019.2962526
https://doi.org/10.1109/COMST.2019.2962526
https://doi.org/10.1016/j.comcom.2019.11.014
https://doi.org/10.1145/3230543.3230566
https://www.usenix.org/conference/osdi18/presentation/maeng
https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3316482.3326346
https://mottola.faculty.polimi.it/papers/maioli21discovering.pdf
https://doi.org/10.1109/IPSN48710.2020.00-36
https://doi.org/10.1109/JIOT.2020.3019662
https://doi.org/10.1109/JIOT.2020.3019662
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/3428231
https://doi.org/10.1145/3090090
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://doi.org/10.1109/DAC18072.2020.9218526
https://doi.org/10.1145/3274783.3274837

	Abstract
	1 Introduction
	2 State-of-the-Art
	2.1 Hardware
	2.2 Operating Systems
	2.3 Programming Environments and Tools
	2.4 Applications

	3 Vision
	3.1 Hardware
	3.2 Systems Software
	3.3 Applications

	4 Conclusion
	Acknowledgments
	References

