NetCL: A Unified Programming Framework for
In-Network Computing

George Karlos
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
g.karlos@vu.nl

Abstract—The emergence of programmable data planes (PDPs)
has paved the way for in-network computing (INC), a paradigm
wherein networking devices actively participate in distributed
computations. However, PDPs are still a niche technology, mostly
available to network operators, and rely on packet-processing
DSLs like P4. This necessitates great networking expertise from
INC programmers to articulate computational tasks in network-
ing terms and reason about their code. To lift this barrier to
INC we propose a unified compute interface for the data plane.
We introduce C/C++ extensions that allow INC to be expressed
as kernel functions processing in-flight messages, and APIs for
establishing INC-aware communication. We develop a compiler
that translates kernels into P4, and thin runtimes that handle
the required network plumbing, shielding INC programmers
from low-level networking details. We evaluate our system using
common INC applications from the literature.

Index Terms—Distributed computing, In-network computing,
Programmable data plane, Programming languages, Compilers

I. INTRODUCTION

The past decade has witnessed a surge of programmable
data plane (PDP) networking devices [1]-[4]. PDP devices
allow for custom packet processing beyond traditional pro-
tocols, a paradigm shift that has facilitated great networking
innovation [5]-[11]]. Leveraging their high performance and
convenient on-path placement, researchers have investigated
the offloading of computational tasks inside the network during
data movement—a new paradigm known as in-network com-
puting (INC) [12]]. INC has been shown to improve throughput,
latency, and energy efficiency, in applications like aggrega-
tion [4]], [13]-[15], caching [16], [[17]], coordination [[18[]-[22],
query processing [23]], and ML inference [24], [25]], among
others. As device capabilities continue to advance, this list is
likely to grow.

Despite its numerous successes, INC remains a niche en-
terprise, only available to networking experts [26], largely
due to its challenging programmability. PDP devices employ
high-performance packet processing chipsets programmed in
domain-specific languages like P4 [27] and NPL [28]. These
languages are based on the match-action abstraction [29]
and expose low-level constructs tailored to network function
development. Consequently, imperative code becomes difficult
to express directly. Attempting to “hack” compute logic into
such low-level networking terms adds considerable cognitive
strain and leads to verbose and brittle code that is hard to
reason about. PDP code is also non-portable [30]], with each

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 © 2024 IEEE

Henri Bal
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
h.e.bal@vu.nl

Lin Wang
Paderborn University
Paderborn, Germany

lin.wang @upb.de

target exposing its own abstractions and APIs, even for simple
functionality. Finally, the absence of OS-like abstractions and
virtualization mechanisms [30], [31] requires INC program-
mers to define the complete networking behavior of the device.
This involves forwarding decisions that depend on the physical
network and would normally be the operator’s responsibility.

Recent efforts on higher-level PDP abstractions [32[-[35]
fall short for INC as they fundamentally focus on packet pro-
cessing and protocol handling. Studies specifically addressing
INC [36], [37]] mostly follow a bottom-up approach, building
on primitives tailored towards existing applications, and do not
solve the two-language problem. The situation is analogous to
the pre-CUDA [38] era of GPGPU programming with pixel
shaders [39]]. We believe that if PDP devices are to serve as
compute accelerators, they should have a dedicated compute
API [40].

In the spirit of compute acceleration APIs like CUDA [38]
and OpenCL [41], we propose NetCL, a unified program-
ming framework for INC, based on extending C/C++. NetCL
features a compute-centric model wherein INC is expressed
as kernel functions processing in-flight messages on PDP
devices. NetCL intuitively couples in-network execution with
message passing and offers a declarative API for application-
specific forwarding. Low-level networking details facilitating
communication are handled by NetCL runtime mechanisms,
allowing programmers to focus on application logic.

In the rest of the paper, we first provide background on PDP
and INC and motivate our idea (§@). Then, we present NetCL'’s
design and workflow (§III), system and in-network execution
model (§IV), and programming model and API (§V). We then
discuss the implementation of the NetCL compiler targeting
Intel Tofino switches, and the NetCL runtime (. We
evaluate our system on representative applications from the
INC literature (§VII), and conclude with a discussion (§VIII),
review of related literature (§IX)), and final remarks (§X).

II. BACKGROUND AND MOTIVATION

P4 is the leading PDP language, enjoying multi-vendor
adoption [3]], [42]-[46]. P4 PDPs are collections of pro-
grammable forwarding elements, that, together with fixed
function ones, are organized as a pipeline, as shown in
Figure [T} Processing starts with header parsing, followed by
user-defined ingress control logic that uses parsed headers to
make an egress port selection. Some architectures (e.g., Tofino)

vimodel

...............

Mellanox Spectrum

Parser|| Port | Control| Bridge| [Controll Route [Control| ... | Buffer |[Deparser
[parser) Port | Control [Bridge] Control Routef[Contro] ..~ | Buffer |]
Xilinx VitisNetP4 - -

[Parser] [Control] [Deparser] :;-]. :::ir_::r::::maEl Fixed Function

Fig. 1: Block arrangements of various P4-programmable dataplane
architectures. Packet path from left to right.

offer an additional egress processing stage. Before exiting the
pipeline, parsed headers are serialized by the deparser control.

Parsers are programmed as finite-state machines. Control
blocks mix imperative code with match-action tables (MATSs)
and target-specific externs. MATs execute code based on
matching conditions over headers and metadata. They com-
pactly express complex if-else chains and usually translate to
hardware-based lookup operations. MATS are runtime recon-
figurable only from the control plane [47].

Central to P4 is the concept of a P4 architecture [48].
This is vendor-provided code defining each programmable
block’s interface and the layout of the pipeline. For in-
stance, Intel’s Tofino Native Architecture (TNA) [49] of-
fers six programmable blocks. Lines 30-43 of Figure [2] are
their user-defined implementations, instantiated in lines 44-
45. Functionality beyond MATSs is exposed as black-box
externs, which are also part of the P4 architecture. The objects
Register, RegisterAction and Hash at lines 5, 6, and 8-10, are
TNA externs for stateful memory and hashing.

P4-programmable chips range from ASICs [3], [50], to
NPUs [45]], [46], to FPGAs [44]. Intel’s Tofino ASIC is based
on the RMT [51] architecture. Parsed headers and metadata
are placed on a bus called the Packet Header Vector (PHV)
and carried through each block sequentially. Control blocks
consist of 12-20 hardware match-action stages. At each stage,
multiple parallel lookup operations over the PHV (match)
determine the inputs to a VLIW instruction (action). Each
stage has its own set of resources like SRAM, TCAM, and
hash engines. Tofino’s traffic manager (TM in Figure [I)
multiplexes the ingress and egress of 2-4 physical, share-
nothing pipelines. The fixed pipeline structure and per-stage
strict timing constraints enable processing at line rate, as well
as bounded, predictable per-packet latency.

We illustrate the shortcomings of using P4 for INC with a
common use case: an in-network cache between a key-value
store (KVS) server and clients. Such a cache can serve billions
of queries per second at microsecond latency [16]]. A simplified
version (handling only GET queries) is shown in Figure [}

Programming abstractions. In the simplest case, look-
ing up a key in the cache involves a MAT with an exact
match on the key’s header field, that, on a hit, writes to the
value’s (placeholder) header field (lines 22-26). Linear stateful
memory is exposed through special objects that require the
programmer to define the access operation (lines 5-7). The
lack of array-like declarations and looping constructs increase

1 header cache_t {bit<8> Op;bit<32> K;bit<32> V;bit<1> Hit;bit<1> Hot;}
2 struct headers_t {eth_t ETH; ipv4_t IP; udp_t UDP;... cache_t Cache;}
3
4 control CountMinSketch(inout headers_t H) {

5 Register<bit<32>, bit<16>>(65536) Cnto; Must repeat definitions for

6 RegisterAction<bit<32>,...>(Cnt@) Incr@ = {
7 void apply(inout bit<32> m, out bit<32> o) {m =m [+| 1; o = m;}}
8 Hash<bit<16>>(HashAlgorithm_t.CRC16) Hasho;

9 Hash<bit<16>>(HashAlgorithm_t.CRC32) Hash1;

10 Hash<bit<16>>(HashAlgorithm_t.XOR16) Hash2;

1 apply {

12 bit<32> c@ = Incro.execute(Hash@.apply({H.Cache.K}))

13 bit<32> c1 = Incrl.execute(Hash1.apply({H.Cache.K});

14 bit<32> c2 = Incr2.execute(Hash2.apply({H.Cache.K}));

15 if (c1 < c0) co = cl;

16 if (c2 < c@) co = c2;

17 H.Cache.Hot = c@ > THRESH) 2 1 : @; }}

18

19 control Cache(inout headers_t H) {

20 CountMinSketch() CMS;

21 action CacheHit(bit<32> v) { H.Cache.V = v; H.Cache.Hit = 1; }

22 table cache { key = {H.Cache.K : exact}

23 actions = {NoAction; CacheHit;?}

24 default_action = NoAction();

25 entries = { 1: CacheHit(42); 3: CacheHit(42);
26 2: CacheHit(42); 4: CacheHit(42);}}

27 apply { if (cache.apply().miss) CMS.apply(); }3}
28
29 // main ingress control

30 control In(inout headers_t H, ...) {

31 apply {

32 if (H.Cache.isValid()) {

5 if (H.Cache.Op == GET_REQ) {
- Cache. apply(H); forwarding code.

35 if (H.Cache.Hit) send_back(); else send_to_server();

36 13

37 if (H.ETH.isvalid()) { ... } How to program the remain-
38 if (H.IP.isvValid())) { ... } ing forwarding behaviour?
39 // L2/L3 forwarding, ACL, Firewall, LB ...

40 33}

41 control Eg(...) { ...}

42 parser InParser(...) { ... } control InDeparser(...) { ... }

43 parser EgParser(...) { ... } control EgDeparser(...) { ...}

44 Pipeline(InParser(),In(),InDeparser(),EgParser(),Eg(),EgDeparser()) P;

45 Switch(P) main;

Fig. 2: Simplified in-network read-only cache in P4 for Tofino [3|.
Networking, target-specific, and non-standard P4 code highlighted.

verbosity and duplication [52f, as code needs to be manually
unrolled (lines 4-16). This often leads to extensive use of the
preprocessor for code generation [S3]] that can quickly lead to
errors [54]. Compositional effects of the aforementioned can
quickly lead to obscure code that is hard to reason about.

Multi-language programming. Using a distinct device
language can introduce subtle bugs, as the programmer must
associate types and operation semantics with those of the host
language. Additionally, modifying MATS, such as for cache
eviction, is done via the control plane using RPC-based APIs
like the P4Runtime [47]. In the end, the programmer juggles
at least three different APIs even for simple functionality.

Target-specific programming. P4 code is tightly coupled
to the underlying architectures [30]. In Figure [2] one can see a
lot of TNA-specific code. In particular, the instantiated control
blocks and their parameters must respect TNA’s declarations.
The stateful memory and hashing abstractions of lines 5-10 are
also TNA-specific. Moving to another target requires rewriting
most of the program. Even worse, different targets may support
different P4 subsets [55], impose different constraints on the
subset they do support [56], and even require non-standard P4
constructs [57]. Line 7 is an example of the latter.

Step 1: programming in C/C++ |

m— Kernels ‘ >< ‘

Unified C/C+ @ P4 Template | ©m
+ Source * (Optional) / \ / \

Step 2: compilation - - -

C/C++ NetCL API (§V)

Runtime (§VI-C)

Comm. Backend

NetCL Compiler (§VI-A/B) *
= onm Step 3:
x86 ... TNA hostexe devi.pd dev2.p4 deployment

Fig. 3: An overview of the NetCL system: (left) the NetCL stack,
(right) the NetCL workflow.

Networking concerns. INC code involves forwarding. For
instance, we want to reflect cache hits back to the sender and
only forward misses to the KVS server (line 35). Given the
monolithic structure of P4 programs, the programmer must
either author the entire program or incorporate the cache
control directly into an existing program. The former requires
filling the gaps in lines 37-43 with, usually, hundreds of lines
of low-level networking code. The latter involves new header
definitions and parser states, table extensions, and revised
control logic. While it is manageable for small programs, real-
world P4 programs span thousands of LoC [58] with non-
trivial interactions. Embedding INC in those is an enormous
task [30]]. Moreover, unless the program is explicitly designed
with modularity in mind, knowledge of the physical topology
is also required. For instance, to implement send_to_server we
need to know the switch port the server is attached to.

III. SYSTEM DESIGN AND OVERVIEW

The primary objective of NetCL is a developer-friendly API
for INC. This entails several requirements. On the one hand,
(R1) it should look like one is programming a computing
element rather than a packet processor. On the other hand,
PDP devices do process packets inside the network. Thus,
(R2) computation is triggered by communication—a fact that
cannot be completely obscured. We also want (R3) some
form of control over forwarding, which is crucial to INC
applications, and (R4) expose PDP features that enhance
performance, while (RS) staying target-independent as much
as possible. Moreover, we want (R6) remote access to device
memory without vendor-specific control plane APIs. Finally,
we want to (R7) minimize dependence on physical network
details, knowledge of which lies in operators. Figure [3] depicts
the main components of our proposed system.

C/C++ API for INC programming. We extend C/C++ with
abstractions that allow embedding in-network computations
into application code in the form of computational kernels
(R1). Kernels are offloaded to PDP devices to compute on
messages. Figure @] shows how NetCL simplifies programming
the in-network cache, reducing the LoC and cognitive burden
of the programmer compared to Figure 2} The kernel definition
focuses purely on the cache logic, and the count-min-sketch
is implemented without worrying about target-specific objects.
Efficient MAT-based lookups are exposed as function calls
(R4), and the required attention to networking is limited
to a reflect() call which returns the message to its sender

1 _managed_ unsigned cms[CMS_HASHES][65536];

2

3 _net_ void sketch(unsigned k, unsigned &hot) {
unsigned c[CMS_HASHES];

4

5 c[0] = ncl::atomic_sadd_new(&ms[@][ncl::xor16(k)1, 1);

6 c[1] = ncl::atomic_sadd_new(&ms[1][ncl::crc32<16>(k)1, 1);
7 c[2] = ncl::atomic_sadd_new(&ms[2][ncl::crc16(k)], 1);

8

for (auto i = 1; i < CMS_HASHES; ++i)

9 if (c[i] < c[0]) c[@] = c[il;

10 hot = c[@] > THRESH ? c[@] : ©;

1}

12

13 _net_ _lookup_ ncl::kv<unsigned, unsigned> cache[] = {{1,42}, {2,42},
14 (3,42}, {4,423};
15

16 _kernel(1) _at(1) void query(char op, unsigned k, unsigned &v,

17 char &hit, unsigned &hot) {

18 if (op == GET_REQ) {

19 hit = ncl::lookup(cache, k, v)

20 return hit ? ncl::reflect() : sketch(k, hot);

21}

22}

Fig. 4: Complete NetCL device code implementing Figure

(R3). To trigger this computation, client code (part of the
same program), performs a special send() operation to send
a message to the KVS server, that, on its way, passes through,
and computes on, the device housing the cache (R2), by only
specifying its ID. Thus, the programmer only declares intent,
leaving deployment concerns to the network operator (R7).

Runtime. NetCL’s host runtime handles communication
and exposes a simple API for sending and receiving NetCL
messages. We have implemented a UDP communication back-
end over POSIX sockets, but others (e.g., DPDK [59]) are
certainly possible. The host runtime also facilitates control
of (remote) device memory, exposed as simple read/write
operations using their respective identifiers (R6). The device
runtime implements NetCL forwarding (e.g., the reflect() call
in Figure [, and other NetCL APIs, on a per-target basis.

NetCL compiler. Our compiler translates NetCL kernels
into P4 code and is based on LLVM [|60]]. Host and device code
is translated into a common IR form, thereby homogenizing
the meaning of types and operations. Moreover, LLVM’s
target-independent IR eases extending NetCL to more targets.
We develop backends for Intel’s Tofino Native Architecture
(TNA) [49] and P4lang’s vimodel [61]] switches. We selected
those two as representatives of opposite extremes because the
former is a highly-constrained (but highly-performant) 12-
stage switching ASIC, and the latter a software emulator that
will execute any valid P4 program.

NetCL workflow. First, the user writes a C/C++ application
consisting of host and device code. To do so, the programmer
first assumes a topology, e.g., a single switch with the KVS
server and clients connected to it. Then, the programmer
defines kernels for each device on that topology, using the
NetCL extensions for kernel placement (the _at specifier in
Figure). Next, the program is compiled once for each device.
The user must supply a NetCL-aware P4 base program. This
could be the actual device program or simply a template
that the network operator will use later on to merge into
the actual device program [30], [31]], [36]]. In either case, it
needs to be properly annotated so that code can be emitted
into it. Host code is also compiled following a standard

i S

7 (b) ?%%?% &

.| Threads || =
(c)

h | [2] [h3][]

Fig. 5: (a) System model. (b) Device model. (c) Assumed topologies
for different computations.

C/C++ workflow. Finally, the generated programs are placed
onto physical network nodes. That is, the assumed (abstract)
topology gets mapped to the real network, via a deployment
system managed by the network operator.

IV. SYSTEM MODEL AND IN-NETWORK EXECUTION

A NetCL system consists of hosts, devices, and compu-
tations. Hosts and devices communicate through message-
passing, with implicit all-to-all connectivity. Hosts may only
send messages to other hosts. Devices may send messages to
anyone. Both hosts and devices may receive messages from
anyone. Computations occur on devices and are triggered only
by incoming messages specifically requesting them.

NetCL augments the send;_,;(m) communication primi-
tive with send-through and send-compute semantics. Message
sending becomes send;_,;(c,d, m), which reads “send mes-
sage m from host i to host j through device d and perform
computation ¢”. The execution of ¢ at d may alter a message
and/or alter its path (e.g., send it to another device), but it
cannot alter its source, or request a different computation from
a subsequent device.

Figure [5[a) shows a NetCL system with four hosts, three
devices, and two computations: square (@) and circle (e).
Host h1 initiates the computations with send;_,2(®, 1, m") and
sendy_4(®,2, m), respectively. The @ message triggers a local
computation at devi, which results in a multicast to hosts h1
and h2. The @ message first triggers a local computation at
dev2, which results in the message being forwarded to dev3. At
dev3, another local computation occurs, at the end of which
the message is forwarded to its original destination, host h4.

An in-network computation may reside on multiple devices,
with potentially different behaviors at each [20]]. Nodes par-
ticipating in single-device computations like @ always form a
star topology as the leftmost one in Figure [5{c). Multi-device
computations require the programmer to implicitly define an
abstract topology and steer messages as if the network looked
that way. The middle topology of Figure [5(c) is a possible
one for @. If m and @ are part of the same application, then the
more compact topology in the rightmost part of Figure [5{c)
is also possible. The abstract topology is an important tool
when reasoning about the program during development—e.g.,
what is the meaning of reflect() at dev3? It captures the INC
traffic patterns of an application and can be later used to drive
deployment on the real topology.

A fundamental rule of NetCL is that no implicit computa-
tion is possible. Every local computation must be explicitly
requested by some participating node. For instance, consider

Specifiers Applies to Meaning

_kernel(u8 c) F
_spec(u8 x) A

Declare a kernel, part of computation ¢
Declare the specification of a pointer argument

_at(ui6 1...) FM Place an entity at 1

net F.M Declare device function or memory
managed M Declare managed memory
lookup M Declare lookup memory

Builtins Type

msg struct { u16 src; ul6 dst; ul6 from; ul6 to; ... }
device struct { ul6 id; u8 kind; }

Lookup Types (only allowed as _lookup_ arrays) Match when
struct kv<k,V> { K k; V v; } x ==k

struct rv<R,V> { struct { R lo; R hi;} r; Vv; } lo <= x <= hi

Device Lib Desc Example

Actions Declarative forwarding See Table

Atomics Memory operations ncl::atomic_add(), ncl::atomic_inc()
Lookup Read _lookup_ memory ncl::lookup()

Math/Binary Special ops ncl::sadd(),ncl::bit_chk(),ncl::rand<u8>()
Intrinsics Target externs ncl::tna::crc64(), ncl::vl::csuml6r()

Host Lib Desc Example

Managed Remote managed memory ncl::managed_read(), ncl::managed_write()
Message NetCL messages ncl::message(), ncl::pack(), ncl::unpack()

TABLE I: Overview of the main NetCL C/C++ extensions and APIs.
We use shorthands F,,A,M for Function, Argument and Memory, uW
for W-bit unsigned integers and T<p...> for template<typename P...> T.

sendy_4(®,3,m). Assuming the middle topology of Figure
Blc), m goes through dev2 before it reaches devs. However, it
is only dev3 that executes ®. The message at dev2 is a no-op.
From the perspective of dev3, the previous hop of this message
is h1. In general, the previous hop of a message is either its
source (always a host) or the last device that computed on it.

The device model is straightforward; see Figure [5[b). A de-
vice consists of logical threads of execution. When a message
is received it is assigned to a thread that processes it uninter-
rupted. Threads have private memory and may access statically
allocated global memory through atomic transactions. There is
no synchronization like locks or barriers. Targets supporting
additional features may expose them as intrinsics.

V. PROGRAMMING MODEL

A NetCL program consists of host code and device code.
The former executes on hosts and the latter is offloaded to PDP
devices. Hosts, devices, and computations are identified by
unique numerical IDs. NetCL exposes a small set of language
extensions, builtins, and APIs, summarized in Table m

A. Network Kernels and Computations

The _kernel(c) specifier declares a kernel function, part
of computation c. A kernel function describes how a device
thread processes a NetCL message. Message data is accessed
through the kernel’s arguments, which may be values, pointers,
or references of fundamental types [62]], except void. Figure [
(on line 16) shows a kernel definition for computation 1 that
processes GET requests. Argument k is a lookup key, passed
by value since it is only read. Modifications to a by-value
scalar argument are device-local. That is, all devices, or hosts,
receiving the message, will always see its original value. In
contrast, v is passed by reference, as it will store the lookup
result, and updates are visible to all receivers.

1 struct sockaddr_in server;

2 char in[2048], out[2048], hit = @, op = GET_REQ;
3unsigned key = 2, val = 0;

4ncl::message m(1,2,1,1);

sncl::pack(out, m, {&op, 8&key, nullptr, nullptr, nullptr});
6 sendto(socfd, out, m.size, @, &server, sizeof(server));

7 recvfrom(socfd, in, m.size, 0, ...);

g ncl::unpack(in, m, {&op, &key, &val, &hit, nullptr});

Fig. 6: Host code querying a KVS with in-network caching. Compu-
tation 1 (Figure E[) at device 1 explicitly requested on line 4.

Specifications. Kernel arguments are associated with a
specification, denoting the number of elements they occupy.
Specifications are inferred from the argument type. The at-
tribute _spec can be used to explicitly specify pointer ar-
guments, otherwise 1 is assumed. Scalars always have a
specification of 1. The collection of specifications of a kernel’s
arguments together with their types, forms the specification of
the kernel. Below are some examples:

1 _kernel(1) void a(int x[3]);
2 _kernel(2) void b(int x[4]); // [4]1[int]
3 _kernel(3) void c(int _spec(4) *x); // [4]1[int]
4 _kernel(4) void d(int x, int y[2], int *z); // [1,2,1][int,int,int]

// [3]1[int]

Kernels a and b have different specifications, meaning that
array-to-pointer decay [63|] does not apply to kernel decla-
rations. Kernel specifications define the layout of the mes-
sages the kernel computes on and are used by the runtime
to construct such messages. Therefore, kernels of the same
computation are required to have matching specifications.
Kernel b and ¢ above could belong to the same computation
but a and d could not.

Net functions. Device code may be further grouped into net
functions, declared using the _net_ specifier, and callable only
from device code. Net functions are not associated with any
specific computation and may be freely used by any kernel.
Argument passing for net functions follows standard C/C++
rules, and thus, the _spec attribute has no meaning and is
ignored when present. The kernel of Figure [] invokes the
sketch net function (on line 18) to update a count-min sketch.

Invoking computations. Kernels are not invoked directly.
Instead, a computation starts by sending out a message, as
discussed in that triggers kernel executions on its path.
Figure [6] shows an example invocation of the computation of
Figure [4] initiated by a KVS client (host 1). Computation 1 at
device 1 is requested explicitly, on line 4. Message data is then
packed into a buffer and sent out over a standard socket. On
lines 7-8, the reverse occurs to unpack the KVS response. The
pack and unpack procedures are aware of kernel specifications
(supplied by the compiler). To avoid unnecessary copying the
programmer may supply NULL to ignore an argument during
packing/unpacking. For instance, val and hit are only read
from a response and can be ignored during packing. hot is
only relevant to the server and can be ignored in both cases.

Actions. Kernels must exit with an action, i.e., a next-step
decision about the message, similar in fashion to XDP [64].
Table [l] summarizes the available actions. Actions may only
appear in return statements, and any path in the kernel’s code
that does not explicitly return an action has the implicit action

Action Description

ncl::drop()
ncl::send_to_host(u16 h)
ncl::send_to_device(u16 d)
ncl::multicast(ul16 gid)
ncl::repeat()
ncl::reflect()
ncl::reflect_long()
ncl::pass()

The message exits the network immediately
Send the message to host with id h

Send the message to device with id d
Multicast the message to a neighbor group
Execute the kernel again

Send the message back to the previous node
Send the message back to its source host
Let the message continue to its destination

TABLE II: NetCL'’s action API for declarative forwarding.

(pass() by default) returned. In Figure E] the kernel exits on
line 20 with a reflect() and on line 22 with an implicit pass().
The multicast() action requires an explicit multicast group ID
to be supplied. While a multicast group may only consist of
adjacent nodes, send_to_host(), send_to_device() reflect_long(),
and (implicitly) pass() and reflect(), may target distant nodes.
The no-implicit-computation rule (§IV) guarantees that no
intermediate device(s) will compute on the message as a result
of those actions. The message will be treated as a no-op until
it reaches its target node.

B. Memory

Kernels access local and global device memory. Local
memory is thread-private. It consists of local variables and
arguments and has the lifetime of a single kernel execution.
The value of default-initialized local variables is undefined.
If needed the user must explicitly initialize them, however,
depending on the target, this could be costly.

Global memory consists of global (or static local) variables
marked as _net_ or _managed_. It is shared by all threads, zero-
initialized, and has the lifetime of the program. Global memory
is accessed atomically, without ordering guarantees, using nor-
mal indexing and assignment operations. In addition, NetCL
offers a rich set of read-modify-write (RMW) atomics, in-
cluding Fetch-and-Arithmetic/Logical/Bitwise and Compare-
and-Swap operations. Most atomics have a conditional version
and one that returns the value after the operation, instead of
the old one. For instance, the atomic_sadd_new calls in Figure []
atomically perform saturated addition, write the result back to
memory, and then return it.

While _net. memory is writable only by device code,
managed memory can also be written by host code. In Fig-
ure[4] one might want a runtime configurable count-min-sketch
threshold. Adapting the kernel for "thresh-update" messages is
a viable solution but increases kernel complexity, and can incur
additional communication when reliability is required. It can
also increase resource consumption and critical path length.
Instead, a _managed_ variable can be used:

1 _managed_ unsigned thresh;
2// from host code...

3ncl::device_connection c;
4ncl::managed_write(c, &thresh, 512);

Managed memory allows for reliable (remote) accesses using
the device’s control-plane mechanisms under the hood. It is
the appropriate mechanism for slow-path operations like kernel
configurations, resets, checkpointing, and so on.

Global arrays may be further specified as _lookup_. While
normal arrays are indexed, lookup arrays are searched. Lookup

arrays are NetCL’s abstraction over match-action tables and
can only be accessed through special lookup functions. A scalar
array marked as _lookup_ acts as a set; looking up a key is
testing for membership:

1 _net_ _lookup_ unsigned a[] = {1,2,3};

2 lookup(a, 2); // true

3 lookup(a, 5); // false

The special types kv and rv (Table [[) allow lookup arrays to
act as hashmaps, with exact and range matches, respectively:
1 _net_ _lookup_ ncl::kv<int,int> a[] = { {1,2}, {2,3} };

2 _net_ _lookup_ ncl::rv<int,int> b[] = { {{1,103},1}, {{11,203},2} };
3int x = 42, y = 42;

4 lookup(a, 2, x);
5 lookup(b, 21, y);

// true, x =3
// false, y = 42

While, lookup memory could, in principle, be writable by
device code, P4 does not yet allow modifying MATs from
the data plane. For this reason, lookup() is the only lookup
memory operation that is currently available to device code.
Host code can insert, remove, or modify _managed_ _lookup_
memory entries. However, global memory cannot be freed or
resized. Its capacity for the lifetime of the program is statically
determined by its declaration. For instance, in Figure [4] cache
has a capacity of four entries.

C. Network Locations and Multi-Device Programming

Kernels, net functions, and global memory are associated
with a location set containing the device IDs each entity is
placed at. By default, all declarations are location-less. That is,
their location set is (). Any device we compile for will include
all location-less entities. Explicit locations may be specified
using the _at(...) specifier. For instance, the kernel of Figure E]
is explicitly placed at device 1.

To prevent ambiguity, no two kernels for the same computa-
tion may exist at the same location. Let KERNELS,. be the set
of _kernel(c) declarations, C* the computation ID of a kernel
k, and Loc(d) the location set of declaration d. Placement
validity of a kernel declaration k is defined as:

VALID(k) <= Loc(k) = @ A KERNELScr = {k} V
Virzk LOC(k") #0 A Loc(k) NnLoc(k') =0

Net functions and memory may only be referenced if they
are placed in at least the locations of the code referencing
them. Let D = NETFUNCTIONS U MEMORY, USE(d) be the
set of references of d and, for any reference u, let USER,, €

NETFUNCTIONS U KERNELS be the function declaration
occurs in. Reference validity w.r.t. location is defined as:

6]

VaVueuse(d) VALID(u) <= LOC(USER,) C Loc(d)
v Loc(d) =0

Violations of those rules result in compilation errors. Some
examples are shown below:

2)

1_net_ _at(1,2) int m[42];

2 _kernel(1) _at(1,2) a(){ m[@] = 1; }// valid

3 _kernel(1) b() {3 // invalid placement because of a
4 _kernel(2) c() { m[@Q] = 42; } // invalid reference. m only at 1,2

Multi-location entities have a copy placed on each device.
For instance, the kernel a above will execute on both device

1 and 2. If different behaviors are required, either the kernel
should be written in an SPMD fashion, by branching on the
device.id builtin, or two kernels should be used. The latter
is more readable and almost always costs fewer resources.
Moreover, when it comes to memory, writes are local only:

1 _net_ _managed_ _at(1,2) int m; // 2 m versions at 1 and 2

2int a = 0;

3ncl::device_connection devl, dev2;

4ncl::managed_write(devl, &m, 1);

5 ncl::managed_write(dev2, &m, 2);

6 ncl::managed_read(devl, &m, &a); // a =1

NetCL does not offer any consistency guarantees between
copies. If required, it must be achieved by other means [65].

D. Restrictions and Target-Specific Concerns

High-performance PDP devices trade programmability for
performance, a fact that cannot be completely obscured.
NetCL’s approach is to be as unrestricted as possible at the
language level and have the compiler reject programs on a
per-target basis. For instance, NetCL allows arbitrary integer
multiplication and division. While software switches [61]] or
FPGAs [44] may support them, ASICs like Tofino only support
those that can be converted to shifts. Other restrictions stem
from targeting P4. For instance, to match feed-forward P4
pipelines, device code may not contain goto statements or
recursion, and only loops that the compiler can fully unroll are
allowed. Moreover, P4 does not expose addressable memory.
To translate an access correctly, the compiler must be able
to infer a base object and a regular offset. For that reason, it
rejects pointer arithmetic and pointer casting in device code.

At the language level, NetCL imposes no restrictions on
memory accesses. However, targeting Tofino introduces an im-
portant one. Tofino stateful memory is a stage-local resource,
meaning that once a stage is over, its memory is no longer
accessible. This affects NetCL device code in two ways. First,
no global memory object may be accessed more than once,
unless accesses are mutually exclusive:

1 _net_ int m[42];

2 _kernel(1) void b(int x) { x = (x > 10) ? m[0] : m[1]; } // valid
3 _kernel(2) void a(int x) { x = m[@] + m[1]; } // invalid
4 _kernel(3) void c(int x) { // depends

5 if (x > 10) { x = m[0]; }

6 else {/* ...calculate i... %/ x = m[il; } }

Whether the access pattern of kernel 3 above is valid depends
on the length of the i calculation. If it is too long, and based
on code dependencies, it may not be possible to place m on a
single stage, as its accesses are spread out.

Global memory objects should also be accessed in the same
order in all paths. Dependent accesses that violate ordering and
cannot be reordered result in the program being rejected:

1_net_ int m1[42], m2[42];

2 _kernel(2) void b(int x) {

3 if (x > 10) { x =mi[e] + m2[x]; }
4 else { x = m2[x] + m1[@]; } }
5 _kernel(1) void a(int x) {

6 if (x >10) { x =mi[0]; x = m2[x]; }
7 else { x = m2[0]; x = mi[x]; } }

// can be reordered

// cannot be reordered

The design of NetCL’s atomic API is influenced by Tofino.
Tofino’s hardware stages perform memory operations on

Stateful ALUs (SALUs). SALUs take input from memory
and the PHYV, execute a small microprogram, and output
to both memory and the PHV. While NetCL atomics like
atomic_cond_add_new may seem redundant at first, they allow
handling the condition and return of results in one stage.
Conditionally executing an atomic_add, and then performing an
addition, to achieve the same result, would increase the critical
path length, and thus require more stages. Given that there are
12-20 stages on Tofino chips, this is rarely acceptable. Targets
that cannot support such atomics are again free to reject the
program with an appropriate error message.

E. Putting It All Together

In Figure [7] we show how NetCL can be used to com-
pactly program in-network AllReduce, an application that
typically requires hundreds of lines of P4. The basic idea is
straightforward. Workers stream packets that contain a chunk
of their values (e.g., 32) to a top-of-rack switch, requesting
aggregation at a certain slot. The switch keeps track of the
workers seen so far, per slot. After intermediate aggregations
packets are dropped. After the last aggregation, the result
is broadcast. Adding reliability to this scheme requires two
things. First, there are two versions for each slot. One holds the
current running aggregation and the other holds the previously
completed one. This allows retransmissions of the last result
in case of packet loss. Second, workers now request slots in
an alternating bit fashion. Correctness relies on the fact that
no worker can be ahead of another by more than 1 slot. More
details can be found in [13].

Our code uses three arrays. The Agg array holds the ag-
gregation slots. Bitmap keeps track of the workers seen so
far, and is needed to detect retransmissions. Count iS used to
track how many values have been aggregated, per slot. Besides
the slot version and values, workers also provide their mask
(1 << worker_id), which saves the kernel from computing it.
Moreover, there are two indices for identifying a slot. bmp_idx
is used to index Bitmap and agg_idx is use for Agg and Count.
This is due to the slot duplication mentioned above. While we
could again compute agg_idx locally by offsetting bmp_idx based
on ver, providing a precomputed value saves up resources.

On lines 8-15, the worker is added to the bitmap of one
version of the slot, and removed from the other, effectively
preparing the second version for phase transition when the slot
completes. Notice that in both branches, Bitmap (sub)arrays, are
accessed in the same order.

Lines 17-32 handle the aggregation. On line 19, values are
added only if the worker is not seen in the requested slot
version. This atomic call allows the condition to be checked
at SALUs. Moreover, it returns the new value only if the
operation was performed; otherwise, it returns the old value.
This serves two purposes. First, if it is the last aggregation, the
result is written to the message. Second, if it is a retransmission
from the worker, it is the old result—the one that was lost—
written in the message. When a slot completes, the old counter
is one, in which case the message is multicast. Note that, when
line 27 returns 1, the actual count in memory has become

1 _net_ uint16_t Bitmap[2][NUM_SLOTS];

2 _net_ uint32_t Agg[SLOT_SIZEJ[NUM_SLOTS * 21;

3_net_ uint8_t Count[NUM_SLOTS * 27];

4

5 _kernel(1) void allreduce(uint8_t ver, uint16_t bmp_idx,
6 uint16_t agg_idx, uint16_t mask,
7 uint32_t _spec(SLOT_SIZE) *v) {
8 uint16_t bitmap;

9 if (ver == 0) {

10 bitmap = ncl::atomic_or(&itmap[@][bmp_idx], mask);

1 ncl::atomic_and(&Bitmap[1][bmp_idx], ~mask); }

12 else {

13 ncl::atomic_and(&Bitmap[@][bmp_idx], ~mask);

14 bitmap = ncl::atomic_or(&Bitmap[1][bmp_idx], mask);
15}

16

17 if (bitmap == 0) {

18 for (auto i = @; i < SLOT_SIZE; ++i)

// slot starts now

19 Agglillagg_idx] = v[il;

20 Count[agg_idx] = NUM_WORKERS - 1;
21} else {

22 auto seen = bitmap & mask;

24 for (auto i = @; i < SLOT_SIZE; ++i)

25 v[i] = ncl::atomic_cond_add_new(Agg[il[agg_idx], !seen, v[il);

26

27 auto cnt = ncl::atomic_cond_dec(&Count[agg_idx], !seen);

28 if (cnt == @) // slot finished earlier
29 return ncl::reflect();

30 if (cnt == 1) // slot finished

31 return ncl::multicast(42);

32 }

33 return ncl::drop();

34 }

Fig. 7: In-network AllReduce a la SwitchML [[13].

o. This gives us a nice way to detect retransmissions for
completed slots as the count will stay at e until it is reset
on line 20. Thus when the old count is e, the message is sent
back to the worker, otherwise dropped.

VI. IMPLEMENTATION

We have implemented a NetCL compiler and host/device
runtimes—steps 1, 2 in Figure [3}—and left application deploy-
ment for future work. Our compiler is built on Clang [66]
and LLVM [60] using a common offloading design [67]]-[69],
shown in Figure[8] The LLVM intermediate representation (IR)
generated by Clang is processed by two separate pipelines.
The device pipeline produces P4 programs. The host pipeline
produces an executable that is linked with the host runtime.

A. Frontend

Our frontend extends Clang’s semantic analysis with the
NetCL extensions, checks for placement/reference validity
(§V-C), and ensures device code is not mixed with host code.
During host-side compilation, a set of rewrites insert records
about device code (e.g., kernel specifications), that are later
used by the runtime to carry out tasks like message pack-
ing/unpacking (§V-A). It also empties, but does not remove,
kernel and net function bodies and resizes all device memory
to a single element. This way, those entities can be referenced
at runtime by taking their address (e.g., as in managed_read), yet
they do not occupy unusable space.

B. Backend

In general, there are no guarantees that a given program
will fit an RMT pipeline like Tofino [56]. Thus, a certain

dataplane

©
<
£
o
)
o
S

host.exe

o

Fig. 8: High-level compiler architecture.

amount of trial and error cannot be avoided even for hand-
written P4 code. In addition, any compiler targeting Tofino is
faced with two major oddities. First, Tofino’s ISA and other
low-level architectural information needed for code generation
are proprietary. The only alternative is to use P4 as a form of
high-level assembly and rely on Intel’s P4 compiler to generate
binaries. Second, Intel’s P4 compiler is also proprietary. In
light of the aforementioned challenges, our strategy is to apply
heuristics we have gathered from relevant literature, and our
own experience in developing P4 code for Tofino. Ideally, we
want to reject programs that would confidently not compile
to Tofino, even if hand-written, and produce P4 code that
does not inhibit the P4 compiler from fitting the program. To
that end, we provide several compiler flags to control certain
transformations, which the programmer can use to recompile
their program and try the P4 compiler again.

Our backend performs over 20 custom passes mixed with
an equal number of LLVM passes. To stay within the page
limit, we will keep the discussion to a high-level description,
and leave the details for an extended version of the paper.

P4-compilable CFG. The first stage is common to all P4
targets. For every kernel, we first inline all _net_ function calls,
unroll loops, and materialize known values (e.g., device.id).
Then, we run a set of peephole optimization, and instruction
simplification and DCE passes [70]. The main goal is for the
CFG to become a DAG; otherwise, a relevant error is issued.
While per-packet latency primarily depends on the number of
stages and enabled components at each, instruction simplifica-
tion is still beneficial as Tofino ALUs are generally restricted
to simple arithmetic operations. The vimodel target, being a
software switch, also benefits from those [71]. Reaching this
point guarantees the program can compile for the vimodel
target; Tofino requires extra work.

Tofino specifics. All global memory allocations are trans-
lated to objects that will be placed on individual hardware
stages by the P4 compiler. Before checking memory accesses
for mutual exclusion and ordering violations (§V-D) we at-
tempt two optimizations. First, we apply a coarse-grained
version of access-based memory partitioning [72]. Global
arrays are split on the outer dimension if all accesses use con-
stants on that dimension. The second optimization is memory
duplication. Since Tofino (and P4) does not support data plane
updates to MATSs, we treat all non-managed lookup memory
as constant, and create a copy for each access, removing
access dependence on a single stage. While the same could
be applied to _managed_ _lookup_ memory, it requires device
support for bulk atomic updates from the control plane. We

are currently not aware of whether this is something supported
by Tofino and thus, have not implemented duplication for
managed _lookup_ memory. Duplication could lead to excessive
resource consumption and thus can be turned off if needed.

We then check for memory violations. First, for any two
accesses to the same global memory object, we perform an
approximate distance check. We count the minimum number
of conditional branches required to reach each access from the
entry block. If the difference exceeds a certain threshold we
issue an error. This serves as an approximation of an access’s
relative position in the pipeline. Thus, if two accesses are
too far apart, we assume they cannot be placed on the same
stage. Second, for any two accesses to different global memory
objects, we check that their relative order is the same in all
CFG paths. If a path with a reverse order is found we abort
compilation and issue an error. This is similar to how Lucid
[33] handles access order violations, except that we do not
assume the declaration order to be the intended order.

We also perform some instruction reordering. We hoist
instructions computing the same value to a common domi-
nator, as long as their operands are available in that block.
Moreover, we perform aggressive speculation for instructions
that produce values and do not modify memory, hoisting them
to the earliest possible block. The combination of these two
may reduce critical path length. We found that speculation is
what allowed one of the major programs in our evaluation to fit
Tofino, by reducing its stage requirements. On the downside,
speculation may put pressure on PHV allocation during P4
compilation. Thus, it can also be turned off.

Certain IR patterns, if translated directly to P4, may pro-
duce inefficient code. We run a pass that tries to detect
those and convert them into intrinsics the code generator
understands. For instance, byte swaps generated as bit-slice
concatenations [48]] can be done in a single stage, and counting
leading zeros/ones can be done with a longest-prefix-match
(LPM) table. We found that direct translation of some icmp
predicates [73|] with dynamic operands, may produce code
that does not compile for Tofino. We transform those into
subtractions followed by an MSB check. We also found that
sometimes, placing bitcasts on hash engines instead of ALUs
allows the P4 compiler to fit a program that otherwise would
not. However, since we were not able to derive any rules for
when to apply those, we added compiler flags to toggle them.

Optimizations may produce unstructured CFG [74], which
cannot be translated to P4 since the latter does not support
arbitrary jumps. We solve this with a CFG structurization algo-
rithm [75] based on predicate variables. Finally, we eliminate
¢-nodes [76]] by introducing a fresh variable for each, a store
instruction before the terminators of its incoming blocks, and
replacing them with load instructions.

Code generation. The code generator translates the LLVM
IR to P4. It produces header definitions for kernel arguments,
their parsers/deparsers, and a single control block that includes
all kernel code for a given location. Largely due to structuriza-
tion, the codegen loop is simple. For every kernel, we traverse
the CFG in reverse postorder (i.e., topological order since

C++ if (1(a | b)) ... B[i] = atomic_or(8&A[i], mask);
%»t1 =

%t2 = icmp eq 116 %t1,0

or i16 %a, %b %a.i = getelementptr i16, %A, %i

%a = call i16 @ncl_atomic_or_16(...)

IR br i1 %t2, ... %b.i = getelementptr i16, %B, %i
store i16 %a, i16* %b.i
bit<16> i; bit<16> tmp; bit<16> mask;
bit<16> a; Register<bit<16>> A;
bit<16> b; Register<bit<16>> B;
bit<16> tmp; RegisterAction<bit<16>,...>(A) ra_or_A = {
P4 action or_16_16_16() { void apply(inout bit<16> m, out bit<16> 0)

tmp = a | b; } {o=m m=m| mask; } }
action mem_1() { tmp = ra_or_A.execute(i);}
or_16_16_16(); action mem_2() { B.write(i, tmp); }

if (tmp ==0) { ... }

r'nér'n_1 O; mem_2Q);

if (lookup(t,k,cacheline)) ... | v[dyn_idx] = 42;

%b = call i1 @ncl_lookup(...) %ptr = getelementptr i32, %v, %dyn_idx

br i1 %b, ..., ... store 132 42, 132 %ptr

bool t_hit: box<bit<32>> v[2]; // header stack
. T . action write_0() {v[@].value = 42;}

e WLr IRUREIE> v) action write_1() {v[1].value = 42;}

cacheline = v; }
table t {

key = {k: exact}

actions = {lu_rd_16;3}}

table idx_tbl {
key = { dyn_idx: exact}
actions = {write_0;write_0;NoAction}
entries = {0 : write_0(Q);

T = GorTO) R 1 wnite 105 3 3

if (t_hit) { ... }

idx_tbl.apply();

Fig. 9: Example code generation.

NetCL Data
(Kernel Arguments)

Payload

[EUt (Optional)

IP | UDP

Fig. 10: Structure of a NetCL-over-UDP packet.

there are no loops) and construct lexical scopes when needed.
A kernel’s entry block is the top-level scope. Unconditional
branch targets are generated in the scope of their predecessor.
Conditional branch targets create a new sub-scope, and sinks
are generated in the scope of the nearest common dominator of
its predecessors. When multiple kernels are present, we gen-
erate a top-level switch statement, branching on a message’s
computation ID (provided by the runtime).

Figure [9] shows some examples of code generations. Most
instructions are generated as P4 actions storing the result on a
local variable. Global memory is generated as Register objects,
and accesses as RegisterAction objects (Figure [2). Lookup
memory is generated as MATs. Local arrays and message
memory are generated as header stacks [48]]. Unlike Registers,
header stacks are not dynamically indexed. To dynamically
index into header stacks we use index tables, as shown in
the rightmost column of Figure 0] An added benefit of this
approach is that we get runtime bounds-checking for free.

C. Runtime

The host runtime implements the mechanisms required to
interface with a device’s control plane to facilitate _managed_
memory interactions, as well as message packing and unpack-
ing (Table @ For both, it uses the device code records em-
bedded by the compiler in the host code. NetCL messages are
crafted based on the chosen NetCL communication backend
and the available kernel specifications (§V). Figure [T0] shows
the layout of a NetCL packet for the UDP communication
backend that we have currently implemented.

The device runtime is a small piece of P4 code that
handles NetCL headers and controls the execution of NetCL
kernels. Together with the generated P4 code it is meant
to be embedded in, and invoked by, a base P4 program.
For this work, we have adopted a simple annotation-based
mechanism for embedding the runtime. For larger programs,
we expect code-composition techniques [30], [31] to be more
appropriate. However, this is currently out of scope.

Part of the NetCL header is the 4-tuple (src, dst, from, to).
The src and dst are host identifiers, and from and to are device
identifiers. When the runtime is invoked, it expects to find
those fields in the parsed headers, according to a fixed naming
scheme. It first checks if to matches device.id, and if so, a P4
control block is invoked to execute the kernel (if any) matching
the requested computation id, which is also part of the NetCL
header. Based on the action selected by the kernel (Table @,
or the absence thereof, the 4-tuple is updated accordingly. This
4-tuple is the interface between the NetCL device runtime and
the device’s base P4 program. The latter is now expected to
forward the message. The NetCL header may not be further
modified.

We have implemented a simple base P4 program that uses a
configurable UDP destination port range to distinguish NetCL
messages and, since deployment was out of the scope, assumes
that the abstract topology (§IV) is the real topology. When a
NetCL message is identified, the incoming NetCL header is
stored, and the NetCL runtime is invoked. When it returns, the
differences between the old and new NetCL header are used
to forward the NetCL message according to §[V] For standard,
non-NetCL communication the base program uses basic link-
layer forwarding. This simple mechanism was enough to test
the performance and correctness of the generated programs in
our evaluation.

VII. EVALUATION

Following [36], [37]], we evaluate our system on three major
stateful applications from the INC literature, and, additionally,
a small stateless one, shown in Table @} AGG is an imple-
mentation of the streaming aggregation protocol of SwitchML
[13]]. It is almost identical to Figure [/| with the addition of
finding a maximum exponent for quantization [13]. Due to
current limitations (discussed in §VIII), we only aggregate 32
values per packet.

CACHE is an implementation of NetCache [16]. It extends
Figure] with puT and DEL operations and a validity bit to
implement the write-back policy. Similar to [16], it supports
8-byte keys and up to 128-byte values. Accessing a cache line
is now a two-step operation where a MAT matches the key to
an index that is then used to locate the cache line. We also
implement the cache line sharing mechanism of [16], using a

1 _at(LEADER) _net_ uint32_t Instance;
2 _at(LEARNERS) _net_ uint8_t VoteHistory[65536];
3 _at(ACCEPTORS) _net_ uint16_t VRound[655367;

4 _at(ACCEPTORS, LEARNERS) _net_ uint16_t Round[655361]; E
5 _at (ACCEPTORS, LEARNERS) _net_ uint32_t Value[8][65536]; ;60
6 =]
7 _at(LEADER) _kernel(1) void leader(uint8_t &type, uint32_t &instance, 540
8 uint16_t round, uint16_t &vround, uint8_t &vote, uint32_t v[8]) { :
5 20
10 }
11 _at(LEARNERS) _kernel(1) void learner(...) { ... } 0 AGG* AGG CACHE PACC PLRN PLDR CaLc
12 _at (ACCEPTORS) _kernel(1) void acceptor(...) { ... }
. . [HDRS+PARSING [0 TABLEs+AcCTIONS [REGISTERS+REGACTIONS [Locic [Orrer [CompuTe Bl NETCL
Fig. 11: P4xos [20|] kernels and memory at three locations.)) o
Fig. 12: Breakdown of P4 code in our test applications.
APPLICATION NETCL P4* P4 REDUCTION
SWITCHML [13] (AGG) 38 1139 686 29.97 1 18.05 AGG CACHE Pacc PLRN PLDR CALc EMPTY
NETCACHE [16]" (CACHE) 91 692 723 7.60 1 7.94
P4xos [20]* 74 381 001 51411217 P4 bf-psc 8.82 5.50 3.35 2.30 1.88 1.39 -
ACCEPTOR (PACC) 38 230 573 6.05 1 15.08 - ncc 0.72 0.73 0.69 0.71 0.69 0.69 0.69
LEARNER (PLRN) 33 241 436 730 113.21 2 bf-p4c 10.79 542 4.05 4.01 3.47 3.16 2.53
LEADER (PLDR) 26 214 276 8.23110.61 2 Toal 1150 6.15 475 471 4.16 3.86 3.22
CALCULATOR [78];t (CALC) 25 139 234 5.56 19.36
GEOMEAN: .14 11193 TABLE IV: Compilation times (seconds).

TABLE III: Lines of code in test applications. { = public P4 code
written in P44, I = public P4 code only targets the vimodel.

bitmap to track which 4-byte words of the cache line belong
to a given key. Finally, hits are counted and misses go through
a count-min sketch and then a bloom filter to decide whether
the key should be reported as hot. Unlike [16] which issues
new messages to a dedicated controller, we use an extra header
field to mark misses as hot before forwarding them to the KVS
server. Since the CACHE implementation is about 90 lines of
code, it has been omitted from the paper, and can be found in
the paper’s artifact material [77]]

The third application is the in-network Paxos algorithm of
[20]. It requires three kernels, at three locations, shown in
Figure [T1] Since their implementation is almost identical to
the pseudocode in [20] we have omitted it for space efficiency.
Finally, CALC is a simple calculator from the P4 tutorials [78].

Language design. Table [lII| shows the lines of code (LoC)
required to program our test applications in NetCL, versus
P4. The P4* column refers to the publicly available P4 code
for each application. Since NetCL does not currently support
all the features they do, we isolate only the relevant lines
(e.g., remove RDMA-related code from AGG and so on).
Moreover, we note that the published SWITCHML code [79]]
failed to compile, the NETCACHE code [53|] is written in
P44 and is incomplete, and the P4X0sS code [80] is written
for the vimodel. To homogenize LoC measurements and
have usable code for the other experiments, we implemented
all applications in P4,4 ourselves, faithfully replicating the
functionality of P4*. The LoC of those implementations are
shown in column P4.

Overall, NetCL requires O(10) LoC, whereas P4 requires
0(100), for the same functionality. We observe an average
LoC reduction of 8x and 12x compared to P4* and P4,
respectively. The difference between P4 and P4* is mainly
because translating P4X0S to Tofino P4 introduces a lot
of Tofino-specific code (e.g. RegisterActionss), not present in
vimodel P4. To better understand the sources and effectiveness

of these reductions, we measured the distribution of code
across different P4 constructs. Figure [T2] shows the results.
On average, over 65% of P4 code is spent on packet-
processing constructs like headers, parsers, and MATs, with
about 30% spent on header definitions and parsing alone.
The (somewhat) more familiar RegisterAction objects account
for 13% of the stateful applications’ code and in most cases
require MATS to invoke them. Considering that only 10% of
the code amounts to control logic, most imperative code is
embedded in MATs and RegisterAction objects that together
account for over 40%. Moreover, only 52% of the P4 code
is spent on compute-related functionality, meaning that the
programmer spends half of their time on network plumbing.
NetCL code is only a fraction of the required P4 code (less
than 13% in the worst case) and contains only compute logic.
Compilation time. We measure compilation times of
NetCL using our compiler (ncc), and P4 using Intel’s Tofino
SDE 9.13.0 [81]] (bf-p4c) on a standard desktop setup with an
AMD Ryzen 7950x and 32GB of memory. Table [[V]shows the
results. An average of five runs is reported. NetCL programs,
on average, take 1.7x more time to compile compared to
handwritten P4. However, most of the time, over 98%, is
spent on P4 compilation. Our compiler introduces insignificant
overhead, always finishing in less than one second.
Resources. The most important metric of P4 code quality
when targeting Tofino is resource consumption. Table [V] sum-
marizes the resource consumption of the P4 code generated by
our compiler, and hand-written P4. We also include the empty
program as an indication of the contribution of the base P4
program we generate code into. We show the number of stages
each program requires, and, following [82] we also show the
usage of various pipeline resources, as percentages. We report
the total consumption across the pipeline on top, and the worst
case stage-local consumption on bottom.
All applications were able to fit a Tofino pipe of 12 stages.
For CACHE, the generated P4 code requires 3 extra stages.
This is mainly due to the min calculation in count-min-sketch

AGG CACHE Pacc PLRN PLDR CALC EMPTY
STAGES pyguuuausis NNNERRNNNNNN NERREN NNRNNEER HEEE (11

Z SRaMj = | [~ i i \
= TCAM ™I | |
=
£ SALUs g i il il |

vLIw gt i i I I b \
s SRAM[Y [= = [I |
5 TCAM | | |
g osaLUsimdl el | ol i
E

vLIW gt [& b i = l

TABLE V: Tofino resource utilization of handwritten (M) and gener-
ated (W) P4. The empty program (M) contains no generated P4 code.

(lines 8-9 of Figurdd). Our compiler generates this as a chain
of subtractions and MSB checks. It is possible to implement it
more efficiently with a MAT, however our compiler does not
currently perform this optimization.

Overall, we observe a modest resource usage of the gen-
erated P4 that is in line with handwritten P4. In some cases,
we even observe some improvements. For instance, the gen-
erated AGG code does not use TCAM. The reason is that
for atomic_cond_add_new and atomic_cond_dec the compiler was
able to generate code that evaluates the condition inside the
RegisterAction using SRAM. Meanwhile, the handwritten P4
code, following [[13]], uses MATs with ternary lookups that do
use TCAM. This is overall advantageous as TCAM is scarce
and primarily needed for LPM-based L3 forwarding.

NetCL can increase PHV pressure in two ways. First, the
compiler may generate additional local variables (e.g. due to
CFG structurization §|1'I[) Second, the shim NetCL header
(Figure [I0) adds extra bytes that need to be carried across the
pipe, compared to handwritten P4 that works directly over an
L4 protocol. Table [VI] shows the local memory requirements
and their effect on PHV for NetCL and handwritten P4. We
observe the biggest increase (12%) in CALC. This is expected
as CALC is a very small program and PHV usage is dominated
by the base program. CALC code generation only increases the
latter by 1%. In all other cases, worst case PHV occupancy
of the generated code is within 2% of the handwritten code,
and up to 17% more than the base program.

Performance. Figure shows the worst-case (no egress
bypass) per-packet latency derived from the exact cycle costs
reported by the Tofino compiler for each program. We observe
that NetCL is within 9% of handwritten P4, on average. We
note that those differences are in the order of 10s of cycles,
and in all cases, total latency is well below 1pus. Moreover, due
to Tofino’s design, line-rate is guaranteed for any program that
successfully compiles. For CACHE, which could potentially be
latency-critical, we observe no difference.

Given Tofino’s line rate guarantees, our compiler “succeeds”
if it generates a P4 program that fits. In other words, end-
to-end application performance cannot be degraded by the
device program, especially when the objective is throughput,
and largely depends on the host-side networking performance.
By extension, given equal communication methods (e.g., UDP
sockets), host-side implementations, and hardware, we should

ATE/s (x 106

AGG CACHE PAcc PLRN PLDR CALC EMPTY

LOCAL VARS 0 504 33 40 0 96 N/A

P4 HEADERS 1160 240 384 384 384 128 N/A

METADATA 96 0 9 9 9 0 N/A

WORST CASEPHV ~ 358% 252% 23.4% 23.55% 232% 8.05% N/A
LOCAL VARS 96 208 0 8b 8 8 0
) IR ALLOCAS 32 176 0 8b 8 8 0
E P4 LOCAL VARS 128 325 48 72 40 40 0
= P4 HEADERS 1224 304 424 424 424 128 64
Z P4 METADATA 60 60 60 60 60 60 60

WORST CASE PHV 36.8% 27.4% 242% 24.75% 24.5% 20.5% 19.7%

TABLE VI: Sources of local memory for handwritten P4 vs. NetCL,
in bits, and worst-case PHV occupancy. Only non-networking headers
and metadata are reported. NetCL rows include the runtime’s and base
program’s headers and metadata.

l: P4 I NeTCL [EmpTY

NORMALIZED CYCLES

AGG CACHE PAcc PLDR PLRN CALC

Fig. 13: Device packet-processing latency.

w
o

@ P4 —@— NETCL

== P4 mmm NETCL

)

-
o
S

[

=)

=)
N
(=]

o

=)
=
[S)

GET RESPONSE TIME (8)

(=)

0 10 20 30 40 50 60 70 80 90 100

PERCENTAGE OF KEYS IN CACHE

‘WORKERS

Fig. 14: End-to-end AGG throughput and CACHE response time

expect equivalent performance between NetCL and handwrit-
ten P4. To validate those claims we perform two end-to-end
experiments where we fix the host program for both versions.
One for the throughput-oriented AGG and one for the latency-
oriented CACHE. P4XO0s requires either three switches or
co-locating multiple kernels to one. Since we did not have
enough switches and a proper deployment system capable of
co-locating kernels is left for future work, we have omitted
it. We used a cluster of six servers, each equipped with a 24-
core AMD EPYC 7443P processor, 256GB of memory, and
a Mellanox Connectx-6 100G NIC, running Ubuntu Server
22.04.4 LTS. Servers are connected to a Netberg Aurora 710
switch [83]], equipped with a 3.2 Tbps, dual-pipe Tofino ASIC.

Following [|13]] we measure AGG throughput in Aggregated
Tensor Elements (ATE) per second, per worker. FigurelEl (left)
shows the results for 2, 4, and 6 workers. We observe no
difference between NetCL and handwritten P4. Similar to [[13]
we see that adding more workers does not degrade per-worker
aggregation throughput.

Figure [T4] (right) shows the mean CACHE response time for
different amounts of cached keys. When all requests miss the
cache, we observe 26 and 27 ps mean response time for P4
and NetCL, respectively, and 9.1 and 9.4 us when all requests
hit the cache. Given the equivalent device latencies reported
in Figure [T3] we attribute the differences to host-side packet
processing costs.

VIII. DISCUSSION AND FUTURE WORK

At first sight, NetCL seems like a restricted version of
C/C++. However, this only reflects the constraints of the
hardware it targets. NetCL’'s APIs aim to be the lowest
common denominator among the capabilities of programmable
switching hardware, which by nature is heavily restricted to
sustain Tb/s switching rates. Processing at line rate requires
the offloaded functionality to be simple, with as little state
management as possible [[84]]. Arbitrarily complex code is
simply not compatible with existing devices [85].

While this work focused on P4 and Intel’s Tofino, other
architectures like Juniper’s Trio [4] may offer opportunities to
expand our model (e.g., run-to-completion processing, deeper
memory hierarchies, and so on). Other PDP architectures like
FPGAs [86]] or Taurus [85], which are capable of more com-
pute per packet, are interesting future targets. The advantage
of using a C/C++ API is that we can introduce new features
on the fly by simply lifting restrictions on a per-target basis.

Our system currently comes with certain limitations. It as-
sumes a single communication backend for each computation.
However, there may be a need for more. For instance, the
original NETCACHE uses UDP for GeT requests and TCP for
PUT and DEL. Additionally, the computation specifications (§V)
force all nodes to process the same packet layouts, which can
result in transferring more data than needed. For instance, in
Figure [6] the client sends zeros as a placeholder for the value
in the response. In [16], clients only send the key, and the
value is appended by the switch. NetCL could be extended
with a message tail abstraction to support this flexibility.

Tofino 1 can write two 32-bit values in a Register, but only
read one [13]]. This is something that the original SWITCHML
takes advantage of to aggregate 64 values per pipe (with
recirculation). In addition, they use a second recirculation
path, across all 4 pipes, to support 256 values per packet.
NetCL does not currently support either. The write-two-read-
one behavior can be exposed as Tofino-specific intrinsics that,
combined with the repeat(), can achieve 64 values per pipe. On
the other hand, cross-pipe recirculation likely requires a new
abstraction, to be handled at the language level. An alternative
would be to write AGG as multiple kernels for 4 devices and
explicitly chain them in kernel code. This is something that
can already be done (for 32-values per device). However, this
only pushes the problem to the deployment system and the
added complexity of the solution is unclear.

Even without the aforementioned complexities, a deploy-
ment system like the one we propose is far from trivial.
It is at least as hard of a problem as server scheduling
and deployment, with the addition of network devices. For
instance, we need to find switches with enough available
resources in the base program to fit the NetCL code, while
respecting the intended abstract topology. Those switches will
also require additional configuration for the NetCL runtime
and the tables processing the NetCL header. Future work could
investigate existing literature [[36]], [87]] towards that direction.

Finaly, our compiler, while capable of generating good

Interface Syntax Exposed Networking PDP Features Ccp Multi-device
Domino [89] C [© X X
Snap [34] Other [) [) v v
Lyra [32] New)) X v
Lucid [33] New [] [] X X
04[52) P4+)) X X
P4All [35] P4+ [) [] X X
P4 [30] P4+) ° X X
P4RROT [90] New © © X x
SPIN [91] C/C++ © © v x
NetRPC [37] RPC O © - X
ClickINC [36] New O © X v
NetCL C/C++ O © 4 v

TABLE VII: Comparison with related PDP interfaces.

enough P4 code, is in a sense the bare minimum required
to translate C/C++ to P4. It is based on heuristics and does
not explicitly model low-level Tofino details (mostly due to
their unavailability) that could potentially improve resource
utilization of the generated code. Future work could investigate
incorporating ideas from the literature that focus on RMT
code-generation, e.g., [56[, [88]], [89].

IX. RELATED WORK

Several works in the literature have proposed PDP APIs
alternative to P4 (or NPL). Table [VII] summarizes them and
compares them against our work in 5 domains: syntax, amount
of exposed networking constructs, amount of PDP features
used, control plane integration, and support for multi-device
programming. Most works do not focus on INC and thus ex-
pose a great deal of networking to the programmer [30]], [32],
[33], [35], [89], hardly making any difference for INC. Works
that do focus on INC adopt a bottom-up approach, with APIs
tailored around existing applications, and either offer limited
expressiveness or require learning a new language [36], [37].
In short, no existing work fully addresses the requirements we
have identified in §III}

X. CONCLUSION

In this paper, we have presented a compute-centric pro-
gramming model for INC, based on familiar constructs like
kernels, device functions, and memory, steering away from
the networking abstractions exposed by contemporary PDP
languages. We have implemented our system as C/C++ exten-
sions and libraries, and developed an LLVM-based compiler
targeting Intel’s Tofino ASIC. Our evaluation using represen-
tative applications from the INC literature has shown that
NetCL requires an order of magnitude fewer lines of code than
handwritten P4 while matching its performance and resource
consumption.

XI. ACKNOWLEDGEMENTS

This research was supported by the Dutch Research Council
(NWO) grant OCENW.KLEIN.209 and, in part, by Google
Research and Intel’s contribution of Tofino hardware through
the ICRP Fast Forward Initiative (FFI’22).

[1]

[2]

[3

=

[4

=

[5

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

O. Michel, R. Bifulco, G. Retvari, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-36, 2021.

F. Hauser, M. Hiberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, vol. 212, p. 103561, 2023.
Intel, “Intel® intelligent fabric processors,”
intel.com/content/www/us/en/products/details/network-10/
intelligent-fabric-processors.html, 2023.

M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie, S. S. R. Kananda, C.-
H. Wu, and M. Ghobadi, “Using trio: juniper networks’ programmable
chipset-for emerging in-network applications,” in Proceedings of the
ACM SIGCOMM 2022 Conference, 2022, pp. 633-648.

L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,
“In-band network telemetry: A survey,” Computer Networks, vol. 186,
p. 107763, 2021.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM special interest group on data
communication, 2019, pp. 44-58.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 15-28.

D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for
ml-based network security applications,” in 28th Annual Network and
Distributed System Security Symposium, NDSS 2021, virtually, February
21-25, 2021. The Internet Society, 2021.

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jagen: A {High-Performance}{Switch-
Native} approach for detecting and mitigating volumetric {DDoS}
attacks with programmable switches,” in 30th USENIX Security Sym-
posium (USENIX Security 21), 2021, pp. 3829-3846.

X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “Beaucoup:
Answering many network traffic queries, one memory update at a time,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, archi-
tectures, and protocols for computer communication, 2020, pp. 226-239.
X. Chen, “Implementing aes encryption on programmable switches via
scrambled lookup tables,” in Proceedings of the Workshop on Secure
Programmable Network Infrastructure, 2020, pp. 8-14.

S. Kianpisheh and T. Taleb, “A survey on in-network computing:
Programmable data plane and technology specific applications,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, pp. 701-761, 2022.
A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling
distributed machine learning with In-Network aggregation,” in /8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 785-808. [Online].
Available: https://www.usenix.org/conference/nsdi2 1/presentation/sapio
C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“{ATP}: In-network aggregation for multi-tenant learning,” in I8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021, pp. 741-761.

D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and T. Hoefler, “Flare:
Flexible in-network allreduce,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1-16.

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP *17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121-136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin,
and I. Stoica, “Distcache: Provable load balancing for large-
scale storage systems with distributed caching,” in 17th USENIX
Conference on File and Storage Technologies, FAST 2019, Boston,
MA, February 25-28, 2019, A. Merchant and H. Weatherspoon,

https://www.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

Eds. USENIX Association, 2019, pp. 143-157. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/liu

Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin, “Netlock:
Fast, centralized lock management using programmable switches,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 126—138.

M. Kogias and E. Bugnion, “Hovercraft: achieving scalability and
fault-tolerance for microsecond-scale datacenter services,” in EuroSys
'20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, A. Bilas, K. Magoutis, E. P. Markatos, D. Kostic, and
M. L Seltzer, Eds. ACM, 2020, pp. 25:1-25:17. [Online]. Available:
https://doi.org/10.1145/3342195.3387545

H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weath-
erspoon, M. Canini, F. Pedone, and R. Soulé, “P4xos: Consensus as
a network service,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1726-1738, 2020.

J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free consistent
transactions using in-network concurrency control,” in Proceedings of
the 26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017. ACM, 2017, pp. 104-120. [Online]. Available:
https://doi.org/10.1145/3132747.3132751

G. Sun, M. Jiang, X. Z. Khooi, Y. Li, and J. Li, “Neobft: Accelerating
byzantine fault tolerance using authenticated in-network ordering,” in
Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
2023, New York, NY, USA, 10-14 September 2023, H. Schulzrinne,
V. Misra, E. Kohler, and D. A. Maltz, Eds. ACM, 2023, pp. 239-254.
[Online]. Available: https://doi.org/10.1145/3603269.3604874

M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp.
2407-2422.

Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, HotNets 2019, Princeton, NJ,
USA, November 13-15, 2019. ACM, 2019, pp. 25-33. [Online].
Available: https://doi.org/10.1145/3365609.3365864

K. Razavi, G. Karlos, V. Nigade, M. Miihlhduser, and L. Wang,
“Distributed DNN serving in the network data plane,” in Proceedings
of the 5th International Workshop on P4 in Europe, EuroP4
2022, Rome, lItaly, 9 December 2022, M. Chiesa and S. L.
Feibish, Eds. ACM, 2022, pp. 67-70. [Online]. Available: https:
//doi.org/10.1145/3565475.3569079

T. A. Benson, “In-network compute: Considered armed and dangerous,”
in Proceedings of the Workshop on Hot Topics in Operating Systems,
2019, pp. 216-224.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.
nplang, “Npl - open, high-level language for developing feature-rich
solutions for programmable networking platforms,” https://nplang.org/,
2023.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69-74, 2008.

H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Composing
dataplane programs with pp4,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 329-343.

P. Zheng, T. Benson, and C. Hu, “P4visor: Lightweight virtualization
and composition primitives for building and testing modular programs,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, 2018, pp. 98-111.

J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, and M. Yu, “Lyra: A cross-platform language and compiler
for data plane programming on heterogeneous asics,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM °20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
435-450. [Online]. Available: https://doi.org/10.1145/3387514.3405879

https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors.html
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1145/3132747.3132764
https://www.usenix.org/conference/fast19/presentation/liu
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3603269.3604874
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3565475.3569079
https://doi.org/10.1145/3565475.3569079
https://nplang.org/
https://doi.org/10.1145/3387514.3405879

[33]

[34]

[35]

[36]

[37]

[41]

[42]

[43]

[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A language
for control in the data plane,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 731-747.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 29-43.
M. Hogan, S. Landau-Feibish, M. T. Arashloo, J. Rexford, and
D. Walker, “Modular switch programming under resource constraints,”
in 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), 2022, pp. 193-207.

W. Xu, Z. Zhang, Y. Feng, H. Song, Z. Chen, W. Wu, G. Liu, Y. Zhang,
S. Liu, Z. Tian et al., “Clickinc: In-network computing as a service in
heterogeneous programmable data-center networks,” in Proceedings of
the ACM SIGCOMM 2023 Conference, 2023, pp. 798-815.

B. Zhao, W. Wu, and W. Xu, “{NetRPC}: Enabling {In-Network}
computation in remote procedure calls,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), 2023,
pp. 199-217.

Nvidia, “Cuda toolkit documentation,” https://docs.nvidia.com/cuda/,
2023.

J. Kriiger and R. Westermann, “Linear algebra operators for gpu imple-
mentation of numerical algorithms,” in ACM SIGGRAPH 2005 Courses,
2005, pp. 234-es.

G. Karlos, H. Bal, and L. Wang, “Don’t you worry ’bout a packet:
Unified programming for in-network computing,” in Proceedings of the
Twentieth ACM Workshop on Hot Topics in Networks, ser. HotNets "21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
99-107. [Online]. Available: https://doi.org/10.1145/3484266.3487395
J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66-73, 2010.

I. Ashkenazi, “Pbt-on-demand on mellanox p4-capable hybrid
switch,” https://opennetworking.org/wp-content/uploads/2020/04/
Itzik- Ashkenazi- Slide-Deck.pdf, 2020.

Cisco, “Silicon one Q100 and QI100L processors data sheet,”
https://www.cisco.com/c/en/us/solutions/collateral/silicon-one/
datasheet-c78-744214.html, 2020.

AMD, “Vitis networking p4 user guide,” https://docs.amd.com/r/en-US/
ug 1308-vitis- p4-user- guide/Introduction, 2023.

—, “Amd pensandoTM infrastracture accelerators,” https://www.amd.
com/en/accelerators/pensando, 2024.

E. Peer, “Mapping P4 to smartnics,” https://opennetworking.org/
wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf, 2017.

T. P. A. W. Group, “P4runtime specification,” 2020-12-01.

T. P. L. Consortium, “P41¢ language specification,” |https://staging.p4.
org/p4-spec/docs/P4-16-v1.2.4.html, 2023.

Intel, “P41¢6 intel® tofino'™ native architecture - public version,”
https://github.com/barefootnetworks/Open-Tofino/blob/master/
PUBLIC_Tofino-Native- Arch.pdf, 2021.

Broadcom, “Trident4 / bcm56880 series,” https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56880-series,
2024.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99—
110, 2013.

A. G. Alcoz, C. Busse-Grawitz, E. Marty, and L. Vanbever, “Reducing
p4 language’s voluminosity using higher-level constructs,” in Proceed-
ings of the 5th International Workshop on P4 in Europe, 2022, pp.
19-25.
netx repo,
2018.

M. D. Ermnst, G. J. Badros, and D. Notkin, “An empirical analysis of ¢
preprocessor use,” IEEE Transactions on Software Engineering, vol. 28,
no. 12, pp. 1146-1170, 2002.

AMD, “Vitis networking p4 user guide - supported p416 language
features,” https://docs.xilinx.com/r/en-US/ug1308- vitis- p4-user- guide/
Supported-P416-Language- Features, 2023.

Y. Li, J. Gao, E. Zhai, M. Liu, K. Liu, and H. H. Liu, “Cetus: Releasing
p4 programmers from the chore of trial and error compiling,” in /9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 371-385.

“netcache-p4,” |https://github.com/netx-repo/netcache-p4,

(571

[58]

[59]
[60]
[61]
[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]
(771

(78]
(791

[80]

[81]

[82]

Intel, “Tna RegisterAction declaration,” |https://github.com/
barefootnetworks/Open-Tofino/blob/master/share/p4c/p4include/
tofinol_base.p4#L675-L701, 2024.

O. N. Foundation, “fabric.p4,” https://github.com/opennetworkinglab/
onos/blob/master/pipelines/fabric/impl/src/main/resources/fabric.p4,
2021.

D. Project, “Data plane development kit,” https://www.dpdk.org/, 2024.
C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International symposium on code
generation and optimization, 2004. CGO 2004. 1EEE, 2004, pp. 75-86.
p4lang, “Behavioral model targets,” |https://github.com/p4lang/
behavioral-model/tree/main/targets, 2023.

cppreference, “Fundamental types,” https://en.cppreference.com/w/cpp/
language/types, 2023.

——, “Array declaration,” https://en.cppreference.com/w/cpp/language/!
array, 2023.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The express data path: Fast pro-
grammable packet processing in the operating system kernel,” in Pro-
ceedings of the 14th international conference on emerging networking
experiments and technologies, 2018, pp. 54-66.

L. Zeno, D. R. Ports, J. Nelson, D. Kim, S. Landau-Feibish, I. Keidar,
A. Rinberg, A. Rashelbach, 1. De-Paula, and M. Silberstein, “{SwiSh}:
Distributed shared state abstractions for programmable switches,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 171-191.

Clang, “Clang: a C language family frontend for LLVM,” https://clang.
llvm.org/, 2023.

nvidia, “The cuda compilation trajectory,” https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/index.html#the-cuda-compilation-trajectory,
2023.

J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt, “gpucc: an open-source
gpgpu compiler,” in Proceedings of the 2016 International Symposium
on Code Generation and Optimization, 2016, pp. 105-116.

T. C. Team, “Offloading design & internals,” https://clang.llvm.org/docs/
OffloadingDesign.html, 2023.

LLVM, “Llvm’s analysis and transform passes,” https://llvm.org/docs/
Passes.html, 2023.

T. K. Dangeti, R. Upadrasta et al., “P4llvm: An llvm based p4 compiler,”
in 2018 IEEE 26th International Conference on Network Protocols
(ICNP). IEEE, 2018, pp. 424-429.

Y.-H. Lai, E. Ustun, S. Xiang, Z. Fang, H. Rong, and Z. Zhang, “Pro-
gramming and synthesis for software-defined fpga acceleration: status
and future prospects,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 14, no. 4, pp. 1-39, 2021.

LLVM, “Llvm language reference manual,” https://llvm.org/docs/
LangRef.html, 2023.

H. Wu, G. Diamos, S. Li, and S. Yalamanchili, “Characterization and
transformation of unstructured control flow in gpu applications,” in /st
international workshop on characterizing applications for heterogeneous
exascale systems, 2011.

N. Reissmann, T. L. Falch, B. A. Bjgrnseth, H. Bahmann, J. C. Meyer,
and M. Jahre, “Efficient control flow restructuring for gpus,” in 2016
International Conference on High Performance Computing & Simulation
(HPCS). 1IEEE, 2016, pp. 48-57.

F. Rastello and F. B. Tichadou, SSA-based Compiler Design.
Nature, 2022.

G. Karlos, H. Bal, and L. Wang, “netcl-paper-artifact,” Aug. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.13328729

p4lang, “P4 tutorial,” https://github.com/p4lang/tutorials, 2023.
“p4app-switchml,” https://github.com/p4lang/p4app-switchML,

Springer

2021.

usi systems, “p4xos-public,” https://github.com/usi-systems/
p4xos-public, 2018.

Intel, “Intel connectivity research program,” https://

www.intel.com/content/www/us/en/products/docs/network-io/
intelligent-fabric-processors/connectivity-education-hub/
research-program.html, 2023.

Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. Ports, A. Sapio, M. Canini,
and N. S. Kim, “Unlocking the power of inline {Floating-Point}
operations on programmable switches,” in /9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), 2022, pp.
683-700.

https://docs.nvidia.com/cuda/
https://doi.org/10.1145/3484266.3487395
https://opennetworking.org/wp-content/uploads/2020/04/Itzik-Ashkenazi-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/Itzik-Ashkenazi-Slide-Deck.pdf
https://www.cisco.com/c/en/us/solutions/collateral/silicon-one/datasheet-c78-744214.html
https://www.cisco.com/c/en/us/solutions/collateral/silicon-one/datasheet-c78-744214.html
https://docs.amd.com/r/en-US/ug1308-vitis-p4-user-guide/Introduction
https://docs.amd.com/r/en-US/ug1308-vitis-p4-user-guide/Introduction
https://www.amd.com/en/accelerators/pensando
https://www.amd.com/en/accelerators/pensando
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://github.com/netx-repo/netcache-p4
https://docs.xilinx.com/r/en-US/ug1308-vitis-p4-user-guide/Supported-P416-Language-Features
https://docs.xilinx.com/r/en-US/ug1308-vitis-p4-user-guide/Supported-P416-Language-Features
https://github.com/barefootnetworks/Open-Tofino/blob/master/share/p4c/p4include/tofino1_base.p4#L675-L701
https://github.com/barefootnetworks/Open-Tofino/blob/master/share/p4c/p4include/tofino1_base.p4#L675-L701
https://github.com/barefootnetworks/Open-Tofino/blob/master/share/p4c/p4include/tofino1_base.p4#L675-L701
https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/impl/src/main/resources/fabric.p4
https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/impl/src/main/resources/fabric.p4
https://www.dpdk.org/
https://github.com/p4lang/behavioral-model/tree/main/targets
https://github.com/p4lang/behavioral-model/tree/main/targets
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/array
https://en.cppreference.com/w/cpp/language/array
https://clang.llvm.org/
https://clang.llvm.org/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#the-cuda-compilation-trajectory
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#the-cuda-compilation-trajectory
https://clang.llvm.org/docs/OffloadingDesign.html
https://clang.llvm.org/docs/OffloadingDesign.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://doi.org/10.5281/zenodo.13328729
https://github.com/p4lang/tutorials
https://github.com/p4lang/p4app-switchML
https://github.com/usi-systems/p4xos-public
https://github.com/usi-systems/p4xos-public
https://www.intel.com/content/www/us/en/products/docs/network-io/intelligent-fabric-processors/connectivity-education-hub/research-program.html
https://www.intel.com/content/www/us/en/products/docs/network-io/intelligent-fabric-processors/connectivity-education-hub/research-program.html
https://www.intel.com/content/www/us/en/products/docs/network-io/intelligent-fabric-processors/connectivity-education-hub/research-program.html
https://www.intel.com/content/www/us/en/products/docs/network-io/intelligent-fabric-processors/connectivity-education-hub/research-program.html

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Netberg, “Aurora 710,” |https://netbergtw.com/products/aurora-710,
2024.

D. R. Ports and J. Nelson, “When should the network be the computer?”
in Proceedings of the Workshop on Hot Topics in Operating Systems,
2019, pp. 209-215.

T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:
a data plane architecture for per-packet ml,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2022, pp. 1099-1114.

P. Bressana, N. Zilberman, D. Vucinic, and R. Soulé, “Trading latency
for compute in the network,” in Proceedings of the Workshop on Network
Application Integration/CoDesign, 2020, pp. 35-40.

M. Blocher, L. Wang, P. Eugster, and M. Schmidt, “Switches for
hire: Resource scheduling for data center in-network computing,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
268-285.

X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma, P. G.
Kannan, A. Sivaraman, S. Narayana, and A. Gupta, “Switch code gener-
ation using program synthesis,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 44-61.

A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 15-28.

C. Gyorgyi, S. Laki, and S. Schmid, “P4rrot: Generating p4 code for the
application layer,” ACM SIGCOMM Computer Communication Review,
vol. 53, no. 1, pp. 30-37, 2023.

T. Hoefler, S. D. Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“sPIN: High-performance streaming Processing in the Network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC17), 2017.

https://netbergtw.com/products/aurora-710

