
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-024-09418-4

1 3

Inference serving with end‑to‑end latency SLOs
over dynamic edge networks

Vinod Nigade1  · Pablo Bauszat1 · Henri Bal1 · Lin Wang1

Accepted: 25 October 2023
© The Author(s) 2024

Abstract
While high accuracy is of paramount importance for deep learning (DL) inference,
serving inference requests on time is equally critical but has not been carefully
studied especially when the request has to be served over a dynamic wireless
network at the edge. In this paper, we propose Jellyfish—a novel edge DL
inference serving system that achieves soft guarantees for end-to-end inference
latency service-level objectives (SLO). Jellyfish handles the network variability by
utilizing both data and deep neural network (DNN) adaptation to conduct tradeoffs
between accuracy and latency. Jellyfish features a new design that enables collective
adaptation policies where the decisions for data and DNN adaptations are aligned
and coordinated among multiple users with varying network conditions. We propose
efficient algorithms to continuously map users and adapt DNNs at runtime, so
that we fulfill latency SLOs while maximizing the overall inference accuracy. We
further investigate dynamic DNNs, i.e., DNNs that encompass multiple architecture
variants, and demonstrate their potential benefit through preliminary experiments.
Our experiments based on a prototype implementation and real-world WiFi and
LTE network traces show that Jellyfish can meet latency SLOs at around the 99th
percentile while maintaining high accuracy.

Keywords  Inference serving · DNN adaptation · Data adaptation · Dynamic edge
networks · Dynamic DNNs

1  Introduction

In the past decade, modern applications such as augmented reality, intelligent
personal assistants, and autonomous driving (Liu et al. 2019; Braun et al. 2019; Ali
et al. 2020; Ahmad et al. 2020) have proliferated. A considerable number of these
applications are based on deep learning (DL) inference, e.g., analyzing continuous

 *	 Vinod Nigade
	 v.v.nigade@vu.nl

1	 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

http://orcid.org/0000-0001-9020-555X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09418-4&domain=pdf

	 Real-Time Systems

1 3

video streams to understand the environment with pretrained deep neural networks
(DNNs) (Ananthanarayanan et al. 2017). Employing sophisticated learning
techniques (He et al. 2016; Bochkovskiy et al. 2020), these DNNs typically demand
intensive computations, making them hard to deploy on mobile and IoT devices
due to the limited capability of these devices. Ongoing research efforts enable the
deployment of large DNNs on end devices with limited capabilities through model
compression (e.g., using quantization (Zhou et al. 2018), model pruning (Zhang et al.
2018b), or knowledge distillation (Hinton et al. 2015)). Despite recent advances,
compressed DNNs still experience significant accuracy loss and require meticulous
tweaks (Cheng et al. 2018; Wang et al. 2019). In addition, the compressed DNNs
are challenging to fit on end devices such as micro-controllers with only a few
kilobytes of memory and low-power consumption, severely limiting the working
set size for storing DNN parameters and inference latency (Svoboda et al. 2022).
Therefore, DL inference for mobile and IoT applications is often offloaded to a more
powerful nearby computing platform such as edge servers equipped with high-end
accelerators like GPUs or TPUs (Bhardwaj et al. 2022).

Handling DL inference requests is generally referred to as inference serving,
where requests are scheduled to computing resources (e.g., GPUs). Then, the
corresponding DNN is loaded on the computing resources to execute the request,
taking the data associated with the request as input. DL inference serving has
been extensively studied recently with frameworks including Clipper (Crankshaw
et al. 2017), Nexus (Shen et al. 2019), Clockwork (Gujarati et al. 2020), and
INFaas (Romero et al. 2021a). The general goal is to achieve resource efficiency
and/or guarantee inference latency (e.g., serving requests within 100ms (Gujarati
et al. 2020)), as typically specified in the service-level objective (SLO) of modern
applications.

Despite the enormous efforts, virtually all existing DL inference serving systems
focus on the server part, leaving out the network part when specifying the SLO.
However, inference requests with input data generated by mobile or IoT devices
need to travel through a (wireless) network before they arrive at the edge server.
Such a network typically shows high performance variability (Huang et al. 2012; Xu
et al. 2020), causing variable delays in network transmission for inference requests.
Hence, SLOs for mobile and IoT applications should be specified end-to-end, cover-
ing both the network and compute parts. Being agnostic to the network time, edge
DL inference serving systems risk ending up with insufficient time to process the
request (e.g., under poor network conditions), leading to SLO violations. Therefore,
considering network time and end-to-end SLOs poses new challenges and calls for
new designs for timely edge DL inference serving for mobile and IoT applications.

In this paper, we propose Jellyfish—a novel framework for timely inference
serving at the edge, aiming to guarantee the end-to-end SLO while achieving
high inference accuracy. Jellyfish relies on two adaptation strategies to achieve
tradeoff between accuracy and latency: data adaptation to adjust the input data
size and DNN adaptation to switch between DNNs. Jellyfish features a new design
that enables collective adaptation policies. More specifically, Jellyfish aligns the
data and DNN adaptation decisions for each client and coordinates the adaptation
decisions among multiple clients by provisioning a zoo (collection) of DNNs with

1 3

Real-Time Systems	

different latency-accuracy tradeoff profiles to serve the requests from these clients
collectively. One major benefit of such a design is the potential of leveraging request
batching—a known technique for improving resource efficiency in DL inference
serving (Crankshaw et al. 2017; Shen et al. 2019). The higher resource efficiency
in Jellyfish translates into more room for inference accuracy improvements under
latency constraints, but at the cost of more complex scheduling decision-making that
involves multiple steps, as depicted in Fig. 1.

Jellyfish addresses the scheduling challenges with a set of efficient algorithms.
Particularly, given a collective DNN adaptation decision (i.e., a selected set of DNN
instances1), Jellyfish first solves the client-DNN mapping problem by applying
dynamic programming. The client-DNN mapping algorithm also leverages batching
to the maximum and outputs the corresponding request batching decision for each
DNN instance. Upon system status changes, Jellyfish employs a separate procedure
to adapt (select) DNNs incrementally based on simulated annealing (Aarts and Korst
1990). Finally, Jellyfish keeps informing each client about the input size of the DNN
to which they are mapped, so that the client performs data adaptation by sending
inference requests with that particular data size.

Jellyfish requires a zoo (collection) of DNN variants with different accuracy-
latency tradeoff profiles to perform DNN adaptation. Commonly, a zoo of
DNNs is generated using a collection of static DNN models that have a fixed
computational graph and parameters during inference (often referred to as
the bag-of-models approach). Alternatively, we can employ a single dynamic
DNN that has a dynamic computational graph that enables partial execution
and virtually embeds multiple DNN variants in one base DNN. Each of these
strategies has its advantages and disadvantages. We can easily construct static

4. DNN
adaptation

Edge
server

Network
time

Compute
time

SLO

3. Batching

2. Client-DNN
mapping

Edge DL inference serving

Inference
requests

Clients

1. Data
adaptation

Fig. 1   Collective DNN adaptation for timely edge DL inference serving

1  The DNN instance represents one instance of a particular DNN variant selected by the Jellyfish sched-
uler from the zoo of DNNs to deploy it on one GPU for inference.

	 Real-Time Systems

1 3

DNN variants by downloading different pretrained models or by training different
architectures separately with standard methodologies. However, the static
approach introduces DNN adaptation overhead during runtime (further explained
in Sect. 2.4). In contrast, dynamic DNNs incur negligible adaptation overhead
and enable on-the-fly adaptation. However, designing and training dynamic
DNNs is challenging, especially for real-world vision tasks like object detection.
In this paper, we propose a greedy instance prefetching strategy to reduce DNN
adaptation overhead when using static DNNs. We further explore dynamic DNNs
as an alternative to the bag-of-models approach for inference serving.

In developing Jellyfish, we make the following contributions:

1.	 We present Jellyfish, a new DL inference serving system for dynamic edge
networks based on the idea of collective DNN adaptation, aiming to achieve soft
SLO guarantees.

2.	 We formulate the collective DNN adaptation problem considering the latency
constraints, and propose efficient algorithms for dynamic client-DNN mapping,
request batching, and DNN selection.

3.	 We design and implement a prototype for Jellyfish and demonstrate its
effectiveness by conducting extensive experiments for popular video analytics
inference tasks with real-world network traces. Our results show that Jellyfish can
meet the SLO of inference requests around 99% of the time while maintaining
high accuracy.

4.	 We present ideas for optimizing the DNN execution to avoid DNN switching
(adaptation) costs on GPUs and enable highly efficient execution for batched
inferences by leveraging dynamic DNNs. Furthermore, we integrate dynamic
DNNs in Jellyfish and conduct preliminary experiments to demonstrate the
effectiveness of dynamic DNNs in inference serving systems.

Paper structure The rest of the paper is structured as follows: Sect. 2 introduces
the background and motivates our work. Section 3 presents the overall system
design. Section 4 describes the formulation of the collective DNN adaptation
problem and our proposed scheduling algorithms. Section 5 presents a design
sketch for leveraging dynamic DNNs to efficiently switch between DNNs and
perform batched inferences. Section 6 discusses our implementation in detail.
Section 7 contains the evaluation of Jellyfish and a discussion of the results.
Section 8 presents the preliminary evaluation of leveraging dynamic DNNs in
Jellyfish. Section 9 discusses limitations and future work. Section 10 describes
related work. Section 11 provides a final conclusion.

Extended version This paper significantly extends our prior conference paper,
“Jellyfish: Timely Inference Serving for Dynamic Edge Networks”, published at
the 43rd IEEE Real-Time Systems Symposium (RTSS) (Nigade et al. 2022). This
paper includes the following key additions:

•	 A new Sect. 2.4, explaining techniques for generating DNN variants and
highlighting their advantages and disadvantages for DNN inference serving.

1 3

Real-Time Systems	

•	 System details for online latency budget estimation in Sect. 3.3.
•	 Addition of a new table that lists all the notations used in the paper (Table 1).
•	 A new part in Sect. 4.3 that describes parameter selection policies for the

simulated annealing algorithm.
•	 A new Sect. 5 that presents our design sketch for leveraging dynamic DNNs

to optimize DNN adaptation overhead and batched inference execution using
techniques like network pruning and early-exit.

•	 Inclusion of implementation details concerning client-side decisions and
overhead in Sect. 6.

•	 Detailed elaboration of anomalies and new observations found in end-to-end
performance analysis (see Sect. 7.2).

•	 Addition of new experimental results (Table 2) comparing Jellyfish with a
baseline under cases with heterogeneous clients.

•	 A new Sect. 8 that presents the preliminary evaluation of dynamic DNNs in
Jellyfish, including the impact on DNN adaptation and the performance of the
early-exit technique.

•	 Discussion and limitations in Sect. 9.1 for supporting accuracy constraints,
providing clients-side adapters, and handling unreliable communication
networks.

•	 A new Sect. 9.2 that discusses future work and the limitations of leveraging
dynamic DNNs.

•	 Inclusion of related work on dynamic DNNs for a comprehensive overview.

These additions contribute to a more thorough and detailed analysis of the Jellyfish
framework to further improve its overall performance.

2 � Background and motivation

2.1 � DL inference serving

Today, DL-based mobile and IoT applications like augmented reality and intelligent
personal assistants rely on deep neural networks (DNNs) to complete inference tasks
like object detection and speech recognition (Liu et al. 2019; Ali et al. 2020; Ahmad
et al. 2020). A DNN consists of multiple layers. To achieve high accuracy, DNNs
employ an increasing number of layers (He et al. 2016; Szegedy et al. 2017), leading
to unprecedented computing demands for DNN execution. However, mobile and
IoT devices are typically resource-constrained, incapable of completing DL-based
inference on time with state-of-the-art DNNs. Furthermore, battery life is usually a
big concern for these devices. Hence, DL inference tasks are often offloaded to more
powerful computing platforms such as edge servers equipped with high-end GPUs
and TPUs (Liu et al. 2019; Ali et al. 2020).

DL inference serving on servers has been extensively studied
recently (Crankshaw et al. 2017; Shen et al. 2019; Gujarati et al. 2020; Romero
et al. 2021a). Applications based on DL inference typically require some form of
latency guarantee, often specified as a service-level objective (SLO), to ensure the

	 Real-Time Systems

1 3

usefulness of the inference result. For example, digital assistance like Amazon Alexa
dictates that the tail latency is constrained within 200–300ms (Chen et al. 2017).
Current inference serving frameworks like Nexus and Clockwork focus mainly on
meeting SLOs via inference request scheduling, leveraging the high predictability of
DNN execution time. However, most of these frameworks assume that a fixed SLO
is specified for the DNN execution part and optimize only the inference serving time
towards this SLO.

We argue that this is insufficient for inference serving at the edge for mobile and
IoT applications. Typically, inference requests with input data (e.g., an image) issued
by mobile or IoT devices travel through a dynamic (wireless) network (e.g., WiFi or
cellular) before they reach the edge server. As a result, the time left for computing
(i.e., inference serving) on the server can experience significant variations due to
the variable network time caused by the variable network performance (see Fig. 2).
Consequently, the application SLO should be defined end-to-end, including both the
network and compute time. Ideally, edge DL inference serving for mobile and IoT
applications should consider jointly the network and compute parts in the pipeline
and be adaptive to network dynamics.

2.2 � Adaptation techniques for inference serving systems

DNN adaptation The idea of DNN adaptation is to choose between functionally-
equivalent DNNs with different latency-accuracy tradeoff profiles. Generally, this
can be achieved by two approaches: (1) DNN switching relies on a set of DNNs
optimized with different depths, widths, or numerical precision offline (Zhang et al.
2020b; Rusci et al. 2020). The idea has been applied in several DL inference serv-
ing systems, such as ALERT (Wan et al. 2020), where the DNN is switched con-
tinuously at runtime to meet latency, accuracy, and energy constraints. (2) Dynamic
DNNs enable the partial execution of the DNN (e.g., a sub-network or early-exit) at
runtime depending on the changing input data content or resource availability (Lee
and Nirjon 2020; Kannan and Hoffmann 2021). Overall, DNN adaptation techniques

Fig. 2   Network time for sending JPEG images with adaptive resolutions over an LTE network (band-
width shown in Fig. 14)

1 3

Real-Time Systems	

are agnostic to the variable network time, making them, when applied alone, ineffec-
tive for end-to-end latency SLO guarantees over a dynamic edge network.

Data adaptation When the input data for the DNN has to be transferred over
a dynamic network (Zhang et al. 2018a; Ran et al. 2018), data adaptation (e.g.,
changing the image resolution) can be used to reduce the input data size to avoid
network bottlenecks (w.r.t. throughput), at the cost of reduced inference accuracy. To
illustrate the power of data adaptation, we perform an experiment where we stream
JPEG images over a dynamic LTE network and adapt the image resolution to ensure
a stable throughput. Figure 2 shows that data adaptation can help to smooth out the
big spikes in the network time for each image, but still, significant variability can be
observed. This shows that data adaptation, while beneficial, is not enough on its own
to deal with tight end-to-end latency SLO requirements.

2.3 � Limitations of existing approaches

We identify the following two major limitations of existing approaches when used
for inference serving with end-to-end latency SLOs under highly dynamic edge
networks.

Misaligned adaptation decisions Existing works mostly focus on either data or
DNN adaptation (Zhang et al. 2018a; Ran et al. 2018; Wan et al. 2020; Lee and Nir-
jon 2020). When simply combined, they could produce misaligned adaptation deci-
sions, leading to suboptimal performance. For example, when the network condition
is good, input data adaptation may choose a high resolution for the image data that
is sent over the network. However, if the DNN running on the server expects a much
lower resolution for its input due to a low compute time budget, the received image
has to be downscaled before being served. This leads to resource waste in terms of
both network time and bandwidth. To quantify this effect, Fig. 3 shows the extra net-
work transmission time due to misaligned adaptation decisions, where up to 150ms
of extra time is unnecessarily consumed simply for network transmission when the
chosen input data size is larger than the input size of the chosen DNN. Conversely, if
the chosen data size is smaller than the input size of the chosen DNN, the data has to
be upscaled when reaching the server, which potentially affects the DNN accuracy

Fig. 3   The extra network time spent when a client sends JPEG images at a resolution larger than the
input size of the DNN on the server under varying bandwidth conditions (covering the bandwidth range
of a real-world LTE network). The resolution gap is defined as the chosen client-sending resolution
minus the resolution expected by the DNN on the server

	 Real-Time Systems

1 3

adversely (Dai et al. 2016). To ensure the end-to-end latency SLO, the decisions for
the two adaptation strategies need to be aligned.

Uncoordinated adaptations for multiple clients Many existing works on adaptive
inference focus on a single-client setup where the adaptation is applied to a single
inference pipeline (Zhang et al. 2018a; Ran et al. 2018; Du et al. 2020; Nigade et al.
2021). Although such a setup could be simply replicated across multiple clients, we
argue that such a design would lead to poor resource efficiency, which is detrimental
to the resource-limited edge environment. Without coordination among the
adaptation for different clients, the server would need to instantiate a large number
of DNN instances, each for a client and possibly in a different size. Further, batching
of inference requests from multiple clients would be prohibited, leading to poor
resource efficiency especially when the inference request rate for each client is low.
To avoid these issues, the adaptations for multiple clients need to be coordinated
holistically.

None of the existing works are able to overcome these limitations
simultaneously (Nigade et al. 2021; Jiang et al. 2021). We argue that a collective
adaptation approach that holistically aligns and coordinates DNN and data
adaptation decisions for multiple clients is required to address the aforementioned
challenges.

2.4 � Techniques for generating DNN variants

Inference serving systems typically deploy functionally-equivalent DNN variants
and switch between them at runtime to trade accuracy off for execution latency. In
the following, we will discuss techniques for generating DNN zoos using static and
dynamic DNNs and highlight their advantages and disadvantages for DNN inference
serving. Note that Jellyfish and its scheduling algorithms are generally applicable
regardless of the techniques used for generating DNN variants.

2.4.1 � Static DNNs

Static DNNs have a fixed computational graph and set of parameters. They follow
the same computational path to process each input and get the prediction output.
Many serving systems (Wan et al. 2020; Romero et al. 2021a) use a set of static
DNN models with different latency-accuracy tradeoff profiles, also known as the
bag-of-models technique. One benefit of this technique is that we can easily generate
a set (bag) of DNN variants by downloading off-the-self pretrained DNNs from the
publicly available model hosting hubs. These DNN variants can have different archi-
tectures (e.g., varying numbers of layers and filters) and are trained separately. This
technique, therefore, leads to different parameters for every DNN variant. Before a
DNN variant can be used for inference, it needs to be loaded into the GPU memory.
Depending on the parameter size of DNNs, the number of DNNs in the set, and the
memory capacity of the GPU, not all DNN variants may fit on the GPU at once.
As a result, the DNN variants need to be continuously swapped in and out of the
GPUs following the adaptation decisions made by the inference serving scheduler.

1 3

Real-Time Systems	

The DNN switching cost in terms of time can be quite high (hundreds of millisec-
onds) and may lead to a significant delay in DNN adaptation. Such a delay can fur-
ther result in a mismatch between the input data size and the expected DNN variant,
which ultimately leads to latency SLO violations and reduced accuracy.

Figure 4 shows the switching cost of different DNN variants (whose parameter
sizes range in [132.66, 215.94] MB) when swapped in and out of the GPU
without considering the interference (due to contention on the PCIe) from the
parallel inference workload. We generate the static DNN variants and the dynamic
DNN using the OFA-ResNet50 (Cai et al. 2020) and DETR (Carion et al. 2020)
models (explained in Sect. 8.1). We observe an increasing trend, albeit weak, in
the switching cost as DNN size increases, particularly for CPU-to-GPU transfer.
The difference (variance) in switching costs across the different DNN variants
remains minimal. This is because our current hardware setup uses a PCIe 3.0 x16
link to the NVIDIA RTX2080Ti, which offers a high theoretical bandwidth of
approximately 16GB/s. Hence, for a narrow range of relatively small parameter sizes
[132.66, 215.94] MB, the data transfer time does not exhibit significant variation.
Nevertheless, even in this ideal scenario with minimal interference, the switching
cost is considerable.

Jellyfish employs a DNN prefetching (caching) technique to alleviate the
switching cost issue (see Sect. 4.4). The idea is to keep prefetching a few extra
DNN variants neighboring (in size) to the currently active DNN variant in the hope
that the scheduler will select the next active DNN variant from the neighbors of
the current ones that are cached on the GPU. However, prefetching techniques can
struggle in highly dynamic environments where adaptation decisions are mostly
irregular. In addition, even when the DNN variant cache hit ratio is high, we must
continuously swap in and out the DNN variants that are neighbors to the active
DNN variant to keep the DNN cache active on the GPU, which inevitably interferes
with the ongoing inference process due to contention on the data transfer link (such
as PCIe).

Fig. 4   The DNN switching cost from CPU-to-GPU (swapped in) and GPU-to-CPU (swapped out) for 16
static DNN variants (their parameter sizes range in [132.66, 215.94] MB) compared to the dynamic DNN
when measured in isolation without any interference (due to contention on the PCIe) bus from parallel
inference workloads on an NVIDIA RTX2080Ti GPU. Dynamic DNN incurs almost negligible (0.17 ms)
switching costs. The x-axis denotes the input size of DNN variants — the smaller the DNN input size,
the lower the latency and accuracy

	 Real-Time Systems

1 3

To avoid the switching cost altogether, we study whether it is possible to embed
all DNN variants as sub-networks in one big base DNN network (sharing a common
parameter set) and enable the switching between sub-networks dynamically
on-the-fly.

2.4.2 � Dynamic DNNs

To overcome the limitations of the bag-of-models technique, we investigate the fam-
ily of DNN architecture called dynamic DNNs. Recently, many works have proposed
to enable the dynamic (partial) execution of DNN models during runtime to improve
computational efficiency without incurring a significant loss in accuracy (Han et al.
2022). One of the primary methods for dynamic DNN execution is through online
network pruning, as depicted in Fig. 5a. In online network pruning, a less important
(or redundant) portion of the DNN network is pruned or skipped during the execu-
tion, expecting it to improve computational efficiency. For example, we can prune
less important activations (neurons) from the layer’s output or we can prune weights,
channels in the filter, or the whole filter itself from the parameter set. The decision
to prune and select a sub-network for the dynamic execution mostly depends on the
changing content of the input. Although this approach aims to maintain the same
accuracy for sub-networks compared to the bigger base DNN, it cannot guarantee

i. DNN variant with
pruning ratio 0.0

ii. DNN variant with
pruning ratio 0.6

Active neurons Pruned neurons

(a) DNN variants with a
neuron pruning method

Stage 2Stage 1
Input

Early-exit
branch 1

Early-exit
branch 2

Detections

Detections

Base DNN (backbone)

(b) Early-exit DNN with two exit branches

Fig. 5   An illustration of dynamic DNNs with two popular methods: a network (neuron) pruning, b early-
exit

Fig. 6   The accuracy comparison of sub-networks (generated with different pruning ratios) trained sepa-
rately and jointly. The accuracy curve of all sub-networks embedded in one big base DNN network and
trained jointly is close to that of sub-networks trained separately (with separate parameter sets). Here, the
architecture of all sub-networks used in the experiment is similar to the AlexNet architecture employed
in SubFlow (Lee and Nirjon 2020) and trained on the CIFAR10 classification dataset (Krizhevsky et al.
2009)

1 3

Real-Time Systems	

latency-bounded execution per input request (a prerequisite in many inference serv-
ing systems (Gujarati et al. 2020)).

SubFlow (Lee and Nirjon 2020) and Heo et al. (Heo et al. 2020) propose to execute
sub-networks within latency bounds depending on the changing compute resource
or time budgets, but by trading accuracy for latency guarantees. One of the main
drawbacks of such an approach is a significant loss in accuracy when sub-networks are
not retrained. If we retrain sub-networks separately, it generates a separate parameter
set for every sub-network, and thus, we arrive at the same problem of high switching
costs as in bag-of-models. OFA (Cai et al. 2020) and DRESS (Qu et al. 2022) propose
joint training for all sub-networks together, avoiding different parameter sets for
different sub-networks. Figure 6 shows the accuracy comparison between sub-networks
(generated with different pruning ratios) when trained separately and jointly. The
accuracy curve for sub-networks trained jointly is close to that of sub-networks trained
separately for the classification task. The joint training thus can help us embed all sub-
networks in one big base DNN. However, as many inference serving systems require
latency-bounded execution, we have to forgo the sub-network selection technique based
on the input content, especially in the batching scenario where inputs in the batch can
have different content. That means we miss an opportunity to optimize the sub-network
selection for accuracy.

Another method to enable dynamic DNN execution is to exit early from the DNN
(a.k.a. early-exit DNNs, as illustrated in Fig. 5b), when the input data is easy to infer,
thereby amortizing the computational cost (Teerapittayanon et al. 2016). To that end,
we need to place exit branches at intervals along the base DNN to decide and exit when
partial execution up to the exit point is confidently accurate in its prediction. The exit
decision from the early-exit DNN primarily depends on the input content (difficulty
level) and less on the latency constraint. Therefore, we cannot optimally utilize early-
exit DNNs for latency-bounded execution due to their coarse-grained execution choices
(only a few exit branches are available). However, the batched inference scenario that
is typical in inference serving systems, provides opportunities to utilize early-exit
DNNs. When some input requests in the batch exit early, the computational need of
those exited input requests becomes zero in the subsequent execution, allowing more
compute resources and thus faster completion opportunity for the remaining requests in
the batch.

While dynamic DNNs can offer benefits to inference serving systems, training
them is still a non-trivial, resource- and time-consuming process, especially when
combining network pruning and early-exit techniques. Furthermore, all existing
works on early-exit focus primarily on the classification task (Teerapittayanon et al.
2016; Laskaridis et al. 2020b), sometimes on the segmentation (Li et al. 2017), or text
generations tasks (Schwartz et al. 2020), and rarely on the object detection task which
is an important fundamental task in many video analytics applications. In Sect. 5, we
sketch a design for leveraging dynamic DNNs for the object detection task to improve
the performance of batched inference and DNN adaptation. Note that, while object
detection is chosen here as an application task, Jellyfish is equally applicable to many
other tasks.

	 Real-Time Systems

1 3

3 � Jellyfish design

Jellyfish’s primary goal is to serve all the inference requests from multiple clients over
the network and meet the request deadlines as defined by their SLOs. In this section,
we discuss the architecture, general workflow, and main components of Jellyfish, which
work in tandem to achieve the goal.

3.1 � Overview

An overview of the Jellyfish system architecture is shown in Fig. 7. Jellyfish
supports multiple clients simultaneously, and its major components are located on
the edge side. When the clients ❶ send the requests to the edge over the network,
the dispatcher component takes the client-DNN mapping from the scheduler and
❷ distributes the requests to workers running the expected DNN. Each worker is a
separate process (on one or more edge servers) holding some GPU resources to ❸
serve inference requests with the batch size selected by the scheduler. The worker
manager ❹ deploys DNNs (stored in the DNN zoo) to the workers following the
DNN selection decision by the scheduler. The scheduler provides the intelligence
of Jellyfish, where it takes the latency-accuracy profiles from the DNN zoo and the
monitored information from the client daemon as input, and ❺ runs our scheduling
algorithms periodically to decide the client-DNN mapping, DNN selection
(adaptation), and batch size for each worker. The scheduler then ❻ informs all the
clients about the input size of their mapped DNNs to start sending new requests at
that particular input size (i.e., data adaptation aligned with DNN adaptation).

While Jellyfish is an edge-centric inference serving system, it requires some basic
support (as daemons) from clients: (1) a metadata exchange mechanism (piggy-
backed on the normal inference requests/responses) for sharing client side monitored
information including the inference request rate and estimated network bandwidth,
and the input size dictated by the client-DNN mapping from the scheduler, (2) a

Dispatcher

Clients

W
or

ke
r M

an
ag

er

Worker 1

Worker 2

Worker N

Scheduler

DNN Zoo

Daemon

La
te

nc
y-

ac
cu

ra
cy

 p
ro

fil
es

DNN and batch
size selection

Client mapping

Input size

Edge

Monitored info

DNNs and profiles

Fig. 7   An overview of the Jellyfish system architecture

1 3

Real-Time Systems	

request preprocessing mechanism that adjusts the data to match the DNN input
size or to the maximum possible size when matching exactly the DNN input size is
impossible due to poor network conditions.

The end-to-end latency consists of two parts: network time (request and response)
and compute time on the edge (for request dispatching and handling, request
preprocessing if any, queuing, and DNN execution).

3.2 � System components

Dispatcher The dispatcher distributes inference requests from clients to their
respective workers. It first fetches the client-DNN mapping from the scheduler and
then redirects the requests to the workers running the corresponding DNNs. The
dispatcher also handles all the connections to clients and includes service endpoints
to interact with the clients, e.g., to (de)register clients in the system.

Worker Each worker is statically allocated on one GPU and maintains a local
queue to buffer incoming requests. The worker process batches requests (resizing
them if needed) in the queue and sends the request batches to the DNN deployed
on the GPU for execution. The worker also implements a lazy dropping policy
at the queue where requests that are too late to be processed by the current DNN
will be dropped directly without further processing (similar to (Shen et al. 2019;
Gujarati et al. 2020)). We exclusively employ GPUs for the DNN inference task
analogous to other serving systems (Shen et al. 2019; Gujarati et al. 2020). Our
system and algorithms equally apply to CPUs or other accelerators, provided that
the predictability and stability of inference latencies hold.

Worker manager The worker manager is responsible for deploying and adapting
DNNs on the workers. Supplied with the DNN selection decision made by the
scheduler, the worker manager fetches the DNN from the DNN zoo and loads the
DNN (moving from the host memory to the GPU memory) on the GPU of the
worker. The worker manager also instructs the worker about the batch size to use
with the deployed DNN. Upon receiving new decisions from the scheduler, the
worker manager swaps out the current DNNs and loads the new DNNs. However,
swapping DNNs on the GPU can be time-consuming and cause delays in DNN
updates. To alleviate this issue, we preload a set of DNNs that are neighboring (in
input size) the currently selected DNN (see Sect. 4.4).

Scheduler The scheduler provides the intelligence of the system by making the
adaptation decisions. The goal of the scheduler is to maximize the overall accuracy
while meeting the latency SLOs for all clients. The scheduler continuously collects
and maintains the following information: client state (i.e., request rate, SLO, and
bandwidth estimation), edge state (currently deployed DNNs and client-DNN map-
ping), and DNN profiles from the DNN zoo. The scheduler then feeds such informa-
tion to a set of scheduling algorithms periodically (or upon system state changes) to

	 Real-Time Systems

1 3

(re)generate decisions for DNN selection, batch size, and client-DNN mapping. We
layout the detail of the scheduling algorithms in Sect. 4.

DNN zoo The DNN zoo keeps a set of DNNs with different input sizes for the
same DL inference task, enabling latency-accuracy tradeoffs in DNN adaptation. To
generate these DNNs with varying architectures and input sizes, there exist several
techniques, such as bag-of-models (Han et al. 2016), early-exit (Laskaridis et al.
2020a), and neural architecture search (Cai et al. 2020). We leverage the bag-of-
models2 technique to select a list of pretrained DNNs. We sort DNNs in increasing
order of their input sizes. After sorting, we expect the accuracies of these DNNs
to follow an increasing order; otherwise, we simply remove the DNNs with lower
accuracy but a larger input size. We profile (and store) the latency and accuracy of
these DNNs for different batch sizes.

Client daemon The client runs a daemon process to collect local metadata (e.g.,
request rate, bandwidth estimation, and SLO) to share with the scheduler on the
edge. Upon the transfer of each inference request, the client daemon estimates the
network bandwidth for that request. To this end, we can employ the online network
bandwidth estimation techniques used in recent works (Du et al. 2020; Laskaridis
et al. 2020a; Ran et al. 2018; Yin et al. 2015).

3.3 � Online latency budget estimation

Our scheduling algorithm requires an estimate of the compute (latency) time budget
for every client to optimally select and map DNN models. As discussed above, the
total time budget (i.e., end-to-end latency SLO) is composed of the time spent on
the network (network time) and the time required for inference request handling
(compute time). This relationship can be expressed as:

We then use the compute time as the latency budget available for request handling
on the server, which includes request queuing, input data preprocessing, and DNN
execution. We also factor in other constants or measurable delays, such as the
dispatch time between the dispatcher and the worker units. As the time spent by
requests on the communication network is variable and depends on the real-time
network bandwidth (see Fig. 2), the latency budget is highly dynamic and, thus,
needs to be computed online and continuously adjusted.

The network time is mostly dominated by request transfer time from the client
to the server, as the size of the input data is typically much larger than the response
(i.e., the inference result). To compute the network time for a client, we estimate its
real-time network upload bandwidth (throughput) and calculate the time per request
as:

compute_time = SLO − network_time

2  A collection of functionally-equivalent DNNs with varying architectures and latency-accuracy tradeoff
profiles.

1 3

Real-Time Systems	

Here, s is the input data size (after compression) and W is the network throughput.
RTT​ is the round-trip propagation delay that can be measured using existing tools
like ping. To efficiently estimate the network bandwidth over time, we can lever-
age the bandwidth estimation techniques adopted in several recent works such as
DDS (Du et al. 2020), SPINN (Laskaridis et al. 2020a), DeepDecision (Ran et al.
2018), or FastMPC (Yin et al. 2015). We will detail our implementation on band-
width estimation further in Sect. 6.

4 � Scheduling algorithms

In this section, we provide the formulation of the scheduling problem and present
our algorithm design. Table 1 contains a list of notations used in the problem
formulation.

4.1 � Problem formulation

Suppose the DNN zoo holds a set of diverse DNNs denoted by
� = {m1,m2, ...,mM} . Each DNN mj ∈ � is associated with profiles including

(1)network_time =
s

W
+ RTT

Table 1   List of notations

Symbol Description

� Set of GPU workers
� Set of diverse DNN models
sj Input size of DNN mj

aj Expected accuracy of DNN mj

lj(b) Inference latency of DNN mj for batch size b
tj(b) Throughput of DNN mj for batch size b
ℂ Set of clients
Oi Pre-specified latency SLO (ms) of client ci
�i Request rate of client ci
Lij Latency (compute) budget of client ci for DNN mj

si Request (data) size of client ci
Wi Estimated network bandwidth of client ci
xijk Binary decision variable to denote if a client ci is mapped to DNN mj deployed on

GPU worker gk
bk Integer decision variable to denote the batch size for the selected DNN on worker gk
zkj Auxiliary decision variable to denote the selection of DNN mj on GPU worker gk

	 Real-Time Systems

1 3

inference latency lj(b) , throughput tj(b) = b∕lj(b) , and expected accuracy aj ,
where b ∈ [1...B] is the batch size bounded by a given integer B. We enumerate
the DNNs in set � in the increasing order of the inference latency. Similar to
other works (Ran et al. 2018; Wan et al. 2020; Zhang et al. 2020a), we assume
that a smaller DNN (i.e., with smaller input size) has lower inference latency, but
also lower expected accuracy. The accuracy of DNNs can be modeled as a non-
decreasing function of the DNN size (Wang et al. 2020). The inference latency
can be modeled as an increasing function of the DNN size and the batch size.
When the batch size increases, the inference latency grows sub-linearly, leading
to increased throughput with diminishing returns at larger batch sizes (Kannan
et al. 2019).

The set of workers performing DL inference is represented by
� = {g1, g2, ..., gK} . We assume each worker exclusively occupies one GPU to run
the DNN to serve inference requests. More fine-grained GPU sharing mechanisms
such as NVIDIA multi-process service (MPS) or multi-instance GPU (MIG) can
also be employed (Yu et al. 2022), where each instance is treated as a separate
worker. The DNN execution time is highly predictable (Gujarati et al. 2020), so
we use DNN latency profiles obtained offline for online latency prediction.

Suppose the system is serving a set of clients given by ℂ = {c1, c2, ..., cN} . Each
of the clients ci generates inference requests with input size si at rate �i . Both the set
of clients and the request rate can be time-varying; for the ease of expression, we
omit the time index in the notation. Each client will be mapped to a worker on the
edge side and inference requests from this client are sent to that particular worker.
The client also specifies the SLO, i.e., the end-to-end inference latency, as Oi . The
network bandwidth at client ci is denoted by Wi , which is estimated by the client dae-
mon as discussed in Sect. 3.2.

The scheduling problem of Jellyfish aims to find the optimal multiset of DNNs to
be deployed on the workers, the client-DNN mapping, and the batch size for each
worker, so as to maximize the expected accuracy of all served inference requests. We
introduce a binary decision variable xijk ∈ {0, 1} to denote if a client ci is mapped
to DNN mj deployed on worker gk and an integer decision variable bk ∈ [1...B] to
denote the batch size for the selected DNN on worker gk . We also introduce an aux-
iliary decision variable zkj ∈ {0, 1} denoting the selection of DNN mj on worker gk .
The scheduling problem can be formulated with the following integer program:

(2)(P1) max
{x,b}

∑
i,j,k aj ⋅ �i ⋅ xijk

(3)s.t.
∑

j,k xijk = 1,∀i

(4)
∑

j zkj ≤ 1,∀k

(5)zkj ≥ xijk,∀i, j, k

1 3

Real-Time Systems	

The aim is to maximize the overall accuracy by serving requests with more accurate
DNNs, given all requests are served within their SLOs. Thus, Eq. (2) defines the
overall accuracy metric as the objective to maximize. Each client is mapped to only
one DNN and one worker as specified in Eq. (3). Equation (4) captures that at most
one DNN is selected for each worker. Equation (5) guarantees that all clients are
mapped to the same and correct DNN when they are mapped to the same worker.
Equation (6) enforces the latency constraint specified with respect to the edge-side
latency (compute) budget Lij when mapping client ci to DNN mj . The latency budget
can be calculated as mentioned in Sect. 3.3 (i.e., by subtracting network time from
SLO). We cap the queueing delay for an inference request on the edge side at the
DNN execution time lj(bk) (representing the worst case), which is also used in (Shen
et al. 2019). Thus, the latency (compute) budget should be at least twice the DNN
execution time. Equation (7) guarantees that the DNN mj on worker gk has adequate
throughput capacity to support the aggregate request rate of all the mapped clients.

The above problem is hard to solve and existing solvers for mixed-integer linear
program (MILP) cannot handle it in reasonable time (e.g., within a second). Our
MILP implementation of the problem in CPLEX takes around 20s to 15min time with
4 threads for finding the optimal solution for a representative setup of 4 workers, 16
clients, and 16 DNNs with a maximum batch size of 12. To handle the complexity, we
propose to tackle the problem by splitting it into two sub-problems: (1) client-DNN
mapping and (2) DNN selection. We optimize each sub-problem iteratively to improve
the overall accuracy objective without violating the latency SLO constraint.

4.2 � Client‑DNN mapping

We first discuss the client-DNN mapping problem, which later serves as a building
block for the DNN selection problem. The goal is to map the set of clients to a given
set of DNN instances, optimizing the overall accuracy as defined in Eq. (2). Our client-
DNN mapping algorithm is based on the key observation that the overall accuracy
is maximized when the larger DNNs (more accurate ones) are assigned with higher
aggregate request rates. We adopt a greedy approach where we first find clients and
map them to the largest DNN to ensure the maximum possible aggregate request rate.
Then, we repeat the same for the remaining clients and DNNs in descending order of
DNN size (i.e., accuracy). The above process is listed in the MapClients function in
Algorithm 1.

Now, the problem becomes how to find a subset of clients with the maximum pos-
sible request rate for a given DNN while meeting the SLOs of all these clients that
may have diverse request rates and latency budgets. The key for solving this problem
is to decide what batch size to use for the DNN as it dictates the maximum inference

(6)
∑

j,k xijk ⋅ 2lj(bk) ≤
∑

j,k xijk ⋅ Lij,∀i

(7)

∑
i,j xijk ⋅ �i ≤

∑
j zkj ⋅ tj(bk),∀k

vars xijk, zkj ∈ {0, 1}, bk ∈ [1...B]

	 Real-Time Systems

1 3

throughput. Using small batch sizes reduces the throughput, thus limiting the aggre-
gate request rate; if we opt for large batch sizes to ensure enough throughput, the infer-
ence latency increases, thus challenging the SLOs of the assigned clients as specified in
Eq. (6).

We observe that, given a fixed batch size, the client-DNN mapping problem reduces
to a standard 0-1 knapsack problem, where we treat clients as items, the request rates of
clients as weights and values, and the maximum throughput of the DNN for the given
batch size as the knapsack capacity. The problem can be solved by existing algorithms,
but we still need to iterate over all possible batch sizes, which is time-consuming.

Algorithm 1: Client-DNN Mapping

Dynamic programming We propose an efficient solution based on dynamic pro-
gramming (DP) to find the optimal client-DNN mapping for a given DNN across all
possible batch sizes in one shot, as listed in function FindOptimalClients in
Algorithm 1. The idea is to enumerate all possible aggregate request rates that can
be assigned to the DNN up to a maximum throughput value at the largest batch size
possible and use them as columns in the DP matrix, as depicted in Fig. 8. We then
recursively start computing the cell values (aggregate request rate) for each row rep-
resenting clients in descending order of their latency budget. For each client (row),

1 3

Real-Time Systems	

we identify the largest batch size for which the latency constraint is satisfied and
use it to identify the largest enumerated column in the DP matrix (lines 13 − 15 ) up
to which the cell values are computed, and the remaining cell values are kept zero.
Line 18 − 27 covers the standard DP iteration for a row (client). Finally, we perform
a standard backtracing from the best cell (maximum aggregate value) to find the
optimal subset of clients.

Example Fig. 8 illustrates a simple example of mapping five clients to DNN mj .
The DNN at batch size bj = 3 can satisfy the latency constraint of three clients, c1,
c2 and c3. Whereas at batch size bj = 2 , the DNN can satisfy two more clients, c4
and c5. At batch size bj = 3 , the theoretical throughput tj(3) of the DNN is 80 and all
three clients with aggregate request rate 40 can be assigned to this DNN mj . There-
fore, the optimal request rate assigned to the DNN at batch size three is 40, denoted
by �opt

j
(3) . However, at batch size bj = 2 , the theoretical throughput tj(2) of the DNN

is 60. Here, multiple subsets of clients are possible, e.g., one subset is {c1, c2, c3, c5}
and another is {c1, c2, c4, c5} with aggregate request rate of 50 and 60, respectively.
Therefore, the optimal request rate assigned to the DNN at batch size two is 60,
denoted by �opt

j
(2) . Finally, the optimal request rate assigned to the DNN is

max(�
opt

j
(3), �

opt

j
(2)) , i.e., 60 at batch size bj = 2 with clients {c1, c2, c4, c5}.

Optimality For a specific DNN, the DP-based solution is optimal. However, when
mapping clients, multiple cells with the maximum aggregate request rate may exist
in the DP table. We then choose the mapping randomly, and this might affect the
optimality of the overall solution. As shown in Sect. 7.6, our approach (together
with DNN selection) is near-optimal.

Time complexity In the worst case, the step size h (Line 12) in DNN through-
put enumeration is one, and therefore, the total number of columns in the DP
matrix is equal to the maximum throughput in the DNN Zoo ( tmax ). The asymptotic

Fig. 8   An illustrative example to show the DP-based algorithm

	 Real-Time Systems

1 3

complexity for mapping clients to GPU workers becomes O(|𝔾| ⋅ |ℂ| ⋅ tmax) , where
� and ℂ are the set of workers and clients.

4.3 � DNN selection

Once the client-DNN mapping is in place, the next question is how to select the
optimal (multi-)set of DNNs, where the size of the set is equal to the number of
workers.

Finding the optimal set from the large space of size
(
|�| + |�| − 1

|�|

)
 to serve

multiple clients that have varying characteristics like different SLOs, request
rates, and network conditions, is nearly impractical using an exhaustive search.
There are two criteria for optimality: (O1) the fraction of the total number of
clients that can be mapped to the selected DNN set, (O2) the average accuracy
improvement as defined in Eq. (2). To compute these metrics, we use client-DNN
mapping (Algorithm 1) as a building block for every candidate DNN set. The
exhaustive search thus becomes even more expensive.

Simulated annealing We choose to use simulated annealing (SA) (Aarts and
Korst 1990), a local search technique based on random walks that avoid being
stuck in local optima when exploring the solution state space. SA accepts weak
solutions with some probability defined by a parameter named temperature T. The
acceptance probability is high initially due to the high temperature; it decreases
with the decrease of the temperature.

Algorithm 2: DNN Selection Based on SA

Algorithm 2 depicts our iterative SA algorithm that performs collective DNN
adaptation. We start the SA process by mapping clients (using Algorithm 1) to
some previous or initial set of DNNs. In our implementation, the initial (i.e.,

1 3

Real-Time Systems	

bootstrap) set of DNNs contains the smallest-size DNN instances from the
DNN zoo. Unlike in conventional SA, we have two modes of operation, namely
DEGRADE and UPGRADE. We first start the DNN’s exploration in DEGRADE
mode, meaning we reduce the DNN size to generate the next state of neighboring
DNNs. This is to first serve the minimum number of clients, for satisfying the
optimality criteria O1. If we may repeat, the degraded DNNs have lower latency
and higher throughput, therefore, improves the possibility of serving more clients.
As soon as O1 is satisfied, we switch the state (DNNs) exploration to UPGRADE
mode. Here, the idea is to select mainly the larger DNNs to improve the accuracy
objective (i.e., optimality criteria O2) without violating O1.

Simulated annealing parameters Although the SA framework has been widely
used, applying it in practice is highly problem-specific due to a non-standard
approach of selecting the algorithm parameters such as the neighbors’ generator
function, acceptance probability, and stopping condition. We determine the SA
parameters in Algorithm 2 for DNN selection as follows:

•	 Stopping Condition (Line 6): One crucial property of SA is that it offers a good
tradeoff between exploration and exploitation controlled by the temperature
T and its temperature reduction strategy (a.k.a. the cooling schedule). In the
UPGRADE mode, we stop the exploration when the temperature falls below the
minimum temperature Tmin . However, in the DEGRADE mode, we stop much
earlier when O1 is satisfied.

•	 Neighbors Generator (Line 7): To effectively explore the search space, we
generate neighboring states (i.e., DNN set) based on the operational mode. In
DEGRADE mode, we decide randomly whether to downgrade the DNN size in
the set (state) by one step or keep it the same. In the UPGRADE mode, we also
add a random decision to upgrade the DNN by one step.

•	 Better Solution (Line 9): The function named Better() defines the quality of
the current solution. In the UPGRADE mode, the solution is better if it does not
violate O1 and has higher accuracy. Here, we define accuracy as the weighted
average of all clients’ inference accuracy (determined by the DNN’s profiled
accuracy to which it is mapped, otherwise zero), where the clients’ frame rate
determines the weight (see Eq. (2)). In the DEGRADE mode, the solution is
better if it improves O1.

•	 Acceptance Probability (Line 12): Accepting a weak solution is determined by
the difference (named diff) between the weak solution and the current solution.
In the DEGRADE mode, the diff is simply the difference between the value O1
of two solutions. In the UPGRADE mode, if the new solution does not violate
O1, the diff is between the value O2 of the two solutions; otherwise, the solu-
tion is dropped. The probability of acceptance also depends on the value of tem-
perature T that decreases over iterations by a reduction factor �.

The effectiveness of SA depends on the initial value of T, the minimum temperature
Tmin , and the temperature reduction factor � . In our simulation, we found the initial
value of T = 0.0125 , Tmin = 0.0005 and � = 0.99 offers decent performance. Note
that the accuracy value of a solution is in the range [0, 1]. Intuitively, it means that

	 Real-Time Systems

1 3

we accept the weak solution with high probabilities when the absolute diff value is
lower than the T value.

4.4 � DNN update

Once the set of DNNs is selected for the current clients, the DNNs must be loaded
onto the workers. However, loading a DNN on a GPU can incur a considerable time
overhead due to the launching of CUDA kernels, transfer of DNN parameters, etc.
To mitigate this issue, we prefetch DNNs on GPUs. More specifically, we employ
a prefetching technique based on the nearest-neighbor policy where we pre-load
DNNs neighboring the currently loaded one. When a new set of DNNs is selected,
we order and match the new set to the old set such that the distance between the
enumerated DNNs is minimized, so as to benefit most from prefetching. This
problem is similar to the well-known stable marriage problem, and we solve it by
sorting the old and new sets in decreasing order of the DNN size. We then assign the
workers running DNNs from the previous set to the new DNNs in an element-by-
element fashion.

5 � Design sketch for dynamic DNNs

In this section, we sketch a design for leveraging dynamic DNNs for the object
detection task by combining the best of the two methods used for creating dynamic
DNNs: (a) network pruning for creating fine-grained DNN variants (sub-networks)
to switch between them dynamically on-the-fly, avoiding the DNN switching cost
and (b) early-exit for optimizing the performance of batched inference. The per-
formance gain of early-exit manifests in three aspects: (1) Inference requests that
exit early with high confidence reduce the inference latency of these requests.
(2) When a portion of the batch exits early, the batch size drops, and thus, more

Stage 1 Stage 2

Transformer

Backbone
Transformer

Encoder Decoder

6 layers 6 layers

Runtime
pruning ratio 0.4

Runtime
pruning ratio 0.6

Encoder
3 layers

Decoder
3 layers

Detections
at exit 1

Input Requests

Detections
at exit 2

Batch size of 5
DNN variant with
backbone pruning
ratio of 0.6

Fig. 9   Dynamic DNN based on a transformer-based vision model (e.g., DETR) to generate different
DNN variants by pruning the backbone network with different pruning ratios. The early-exit branches
optimize, in the case of batched inference, latency and accuracy by enlarging (i.e., reducing the pruning
ratio) the backbone stage for inference requests in the remaining batch

1 3

Real-Time Systems	

compute resources can be allocated to the requests remaining in the batch, leading to
faster completion of these requests. (3) The availability of extra compute resources
resulting from early-exit creates the opportunity of reducing the pruning ratio of
the remaining layers in the DNN variant (i.e., enlarging the subsequent layers). The
enlarged part of the DNN for the remaining requests in the batch can potentially
contribute to accuracy improvement. Figure 9 shows our proposed dynamic DNN
for the object detection task, and we explain the inference workflow in the following
parts.

5.1 � Dynamic DNN creation for object detection

Many works on dynamic DNN execution, especially on early-exit DNNs, have
focused on a simple classification task and rarely on complex regression tasks like
object detection (Han et al. 2022). One of the reasons is that typical object detection
models have a highly compute-intensive object detection head (for region proposals,
classification and regression) (Ren et al. 2017) and are tightly integrated with the
feature extractor in the case of single-stage object detectors (Bochkovskiy et al.
2020). Thus, adding multiple heavy object detection heads as exit branches defeats
the primary objective of saving computations.

Recently, transformer-based vision models such as DETR (Carion et al. 2020)
and Deformable DETR (Zhu et al. 2021) have become increasingly popular for
object detection. These models use popular DNN architectures like ResNet to extract
image features and pass these features through the transformer block (containing an
encoder-decoder module) to output detections. Fortunately, the execution time of the
transformer block is relatively small compared with their feature extractors (called
the backbone DNN) (Sreedhar et al. 2022; Samplawski and Marlin 2021). Therefore,
we can add lighter transformer blocks as exit branches at critical points in the back-
bone DNN, thus enabling effective early-exit for object detection. Furthermore, we
use network pruning techniques on the backbone DNN (i.e., the feature extractor) to
create DNN variants, thereby realizing our idea of dynamic object detection DNN
model with early-exit functionality.

Figure 9 shows our proposed DNN architecture based on vision transformers
for object detection combining network pruning and early-exit techniques. In the
figure, the Jellyfish scheduler ❶ selects a DNN variant with an initial pruning ratio
of 0.6 (fraction of DNN to be pruned) to be deployed on a GPU for serving input
requests with a batch size of 5, given a fixed compute time budget. The batched
input goes through stage 1 (a block of consecutive layers) of the backbone network.
The output feature from the first stage ❷ moves to the first transformer block (i.e.,
exit branch 1). At exit branch 1, the easy-to-predict requests from the batch might
exit confidently, leading to a decrease in batch size at stage 2. As the batch size
decreases in stage 2, allowing for more compute resources per inference request in
the batch, we can reduce the pruning ratio of stage 2 (i.e., enlarging the backbone
network in this stage) without affecting the overall batch execution time. Even if
we do not enlarge the network in stage 2, it can still accelerate the execution of the
remaining batch. The remaining batch then ❸ passes through (the enlarged version

	 Real-Time Systems

1 3

of) stage 2 of the backbone. Finally, the remaining batch features ❹ are fed into the
second transformer block (i.e., exit block 2) to get the predictions for the remaining
requests in the batch. In practice, we use a “transformer" head, but as a concept, it is
a more general “classifier" or “prediction" head that does not necessarily has to be a
transformer.

The above design allows smooth runtime adaptation of DNN variants with
negligible costs and accelerated execution of batched inference. In addition, we
expect a gain in overall accuracy for a fraction of the requests (the ones that do not
exit-early) due to the enlargement of stage 2 (with a new and low pruning ratio of
0.4) compared to passing the whole batch through a static DNN variant with a high
pruning ratio of 0.6.

A major challenge is how to decide when to exit early, a non-trivial problem
for the object detection task. We explain our approach to designing an early-exit
decision-making module in Sect. 5.3.

5.2 � DNN training

Training our dynamic DNN with the network pruning and early exit functionality
involves a multi-step process, as it should train multiple exit branches. We build
our training process on top of existing multi-step training strategies adopted in the
early exit paradigm (Laskaridis et al. 2021; Matsubara et al. 2023). Our multi-step
training process works as follows: In the first step, the main exit branch is trained
end-to-end together with the backbone DNN. As the backbone DNN contains
different DNN variants generated with different pruning ratios, we must jointly train
all the DNN variants, similar to DRESS (Qu et al. 2022). That means the main exit
branch should be trained on features from all DNN variants, and we should combine
(aggregate) the loss values for all the DNN variants when back-propagating. Once
the main exit branch (on all DNN variants) and the backbone DNN are trained, we
train the remaining early-exit branches in the second step. In this step, we train only
the respective exit branch and freeze other parts of the backbone DNN. Similar to
the first step, we must train exit branches on features from all the backbone DNN
variants.

5.3 � Early‑exit decision making

Once we have our fully trained dynamic DNN, the question is how to decide
when to exit from a particular exit branch. Compared with the classification task,
the decision to exit from a particular exit branch is non-trivial and is an under-
explored topic for regression tasks like object detection (Laskaridis et al. 2021). For
classification tasks, the simple approach is to compare the top class score or entropy
of the softmax output vector of the exit branch against a predefined threshold to
make an exit decision (Teerapittayanon et al. 2016). However, for object detection,
we need to examine and quantify various factors, including the object class scores of
bounding boxes, the bounding box area and the number of bounding boxes recalled

1 3

Real-Time Systems	

correctly, thus making it hard to formulate the exit decision-making strategy. The
class score of bounding boxes is relatively easy to measure and quantify using
similar approaches to the classification task. However, estimating the accuracy of
bounding boxes and the number of bounding boxes recalled is a hard problem in the
absence of the ground truth.

Our approach is to use a learning-based module, e.g., a lightweight binary
classifier. The classifier takes some extracted features (intermediate or output
features) from the exit branch and outputs a scalar value (in [0, 1]), indicating the
confidence in the outputs of the exit branch. A high value indicates that the output
(prediction) of the exit branch is likely accurate. The real challenge is training such
a binary classifier. To address this challenge, we propose to create a training dataset
of positive and negative samples based on the loss value between the exit branch
output and the ground truth. We can use the same loss function used in training the
full DNN model to compute the loss value. The samples with a loss value lower
than a predefined threshold contribute to positive samples, and to negative samples
otherwise. Once the training dataset is created, the learning-based module can be
trained like any other binary classifier.

Our learning-based approach appears promising in making exit decisions. In
our preliminary experiment with the object detection model (ResNet50-DETR)
and two-exit branches, the main branch achieves an accuracy of 0.623 mAP (mean
average precision) on the COCO-val2017 image dataset (Lin et al. 2014), and exit-
branch 1 achieves 0.401 mAP when all validation samples exit from the respective
branch. With the oracle that makes an early-exit decision reasonably accurate, the
overall mAP of the early-exit DETR is 0.594, where 35.76% of samples exit from
exit-branch 1. The oracle is based on the dataset of positive and negative samples
generated using the loss values and a predefined loss threshold (as described above).
Our learning-based decision-making module achieves 0.587 mAP for 30.94%
of samples exiting from the first exit branch, demonstrating the high potential of
enabling an early-exit functionality for the object detection task.

5.4 � Dynamic DNN summary

To summarise, dynamic DNNs generated with a combination of network pruning
and early-exit functionality have the potential to avoid the DNN switching cost
by embedding all DNN variants as sub-networks in one shared base DNN. The
early-exit functionality can be used for efficient execution of the batched inference
thanks to the reduced computation for the remaining batch with a reduced number
of inference requests, or it can be used to improve accuracy by enlarging the DNN
for the remaining batch. Specifically, a transformer-based vision model enables the
early-exit functionality for the object detection task attributed to their lightweight
detection head. In Sect. 8, we demonstrate the applicability of our design to Jellyfish
through preliminary evaluations.

	 Real-Time Systems

1 3

6 � Implementation

We implement a Jellyfish system prototype (around 4K lines of Python code) using
the Pytorch framework for DNN inference on GPUs. We also provide simulation
scripts to test the performance of our scheduling algorithms for different DNNs,
clients, and GPU configurations. The source code is publicly available at: https://​
github.​com/​vuhpdc/​jelly​fish.

Hardware setup We carry out parts of our experiments on a server equipped with
an Intel Core i9-10980XE CPU (36 cores), 128GB DRAM, and two GPUs (NVIDIA
RTX2080Ti), running Ubuntu 18.04. We then use another server equipped with an
Intel Core i7-8700K CPU (12 cores) and 32GB DRAM to emulate multiple clients,
ensuring that compute, memory, and network bandwidth are not the bottleneck. The
original bandwidth between these two servers is 1Gbps. We use the Linux tc utility
to control clients’ bandwidth and replay real-world network traces. For large-scale
experiments, we use AWS instances to deploy the clients and GPU workers (see
Sect. 7.5).

Software details We expose Jellyfish service APIs through standard gRPC calls
and use a bidirectional stream mechanism to handle continuous request-response
client streams. Currently, the dispatcher module includes a multi-threaded gRPC
server. The scheduler module runs in a separate process at a periodic interval of
half a second unless specified explicitly. Each worker runs two processes: one to
receive requests and load DNNs and the other as a DNN executor running with the
highest priority. The communication between processes on the same machine is
done through Python SimpleQueue (i.e., a Pipe) and PyZMQ over TCP on the
distributed server. For stable and deterministic performance, we disable NVIDIA’s
cuDNN optimisations and control randomness with manual seed values (PyTorch
2022). For frame (image) compression, we use a JPEG encoding scheme with
a high compression level to trade a slight degradation in analytics accuracy for
speed. Furthermore, we hold all DNNs in the DNN zoo in memory to avoid disk IO
overhead.

Placement of system components On a stand-alone, multi-GPU server, the
dispatcher, scheduler, and each worker run in their own processes on the same
machine. Therefore, the server should have sufficient download network bandwidth,
enough CPU cores to run each process on dedicated cores, sufficient DRAM to hold
the DNN zoo and store incoming requests (aggregate of all clients). On distributed
servers, the dispatcher and scheduler processes run on a front-end machine, whereas
workers run on separate machines where GPUs are installed. The front-end machine
should be a powerful server to handle connections from multiple clients. The
network between front-end and worker machines should not be a bottleneck and
should have predictable dispatch latency.

Bandwidth estimation We implement a separate acknowledge mechanism for
inference requests so that clients can estimate their network bandwidth per request
by measuring the request input data size and the smoothed round-trip latency. The
scheduler then uses the harmonic mean (following prior work (Yin et al. 2015)) of

https://github.com/vuhpdc/jellyfish
https://github.com/vuhpdc/jellyfish

1 3

Real-Time Systems	

the client’s bandwidth over the past one second as the estimated bandwidth for the
client.

Client-side decisions and overhead We implement a very lightweight process
(in terms of compute, memory and network usage) on clients to apply decisions
(i.e., data size to use) received from the scheduler running on the server and only
perform lightweight data resizing and bandwidth estimation, which is typical for
adaptive-video-analytics systems (Zhang et al. 2018a; Ran et al. 2018; Laskaridis
et al. 2020a). Furthermore, Jellyfish imposes a negligible network overhead by
piggybacking small metadata (a few Kbps) on the video data.

7 � Performance evaluation

We perform extensive experiments for real-world scenarios using object detection
inference tasks. We demonstrate the effectiveness of Jellyfish by answering the
following questions:

Q1	� Can Jellyfish fulfill its goal under variable network conditions and diverse
client characteristics?

Q2	� How well does Jellyfish perform compared with other DNN inference
scheduling algorithms?

Q3	� How well does Jellyfish perform on large-scale setups?

Fig. 10   The DNN performance profiles

	 Real-Time Systems

1 3

7.1 � Methodology

DNN zoo We employ a well-known pretrained YOLOv4 DNN
architecture (Bochkovskiy et al. 2020) and use its Pytorch-YOLOv4
implementation (Tianxiaomo 2020) for the object detection task. Importantly,
YOLOv4 supports different DNN input (frame) sizes by resizing the network
configuration and using the same weight parameters across all resized networks.
We choose 17 different DNN configurations whose input sizes (in both dimensions)
range from 128 to 640 with a step size of 32, indexed from 0 to 16. We discard the
DNN of size 640 as it has lower accuracy than size 608, but has higher latency for
execution.

DNN profiles We profile the DNNs (accuracy and latency) using the COCO-
val2017 image dataset (Lin et al. 2014) and use the standard comparison metric
called mean average precision (mAP) to rank the DNNs. Figure 10 shows the
DNN profiles used in the evaluation. From the throughput profile, we see that
for the majority of the DNNs, the curve starts plateauing at around batch size 8.
Furthermore, we use the 99th-percentile (P99) latency profile to keep SLO violations
low. Unlike the average latency profile, the P99 latency profile curve may not follow
the non-decreasing trend (as required in our algorithms) due to high tail variations.
Thus, our latency estimator adjusts the values by conservatively allocating the
higher latency values of smaller DNNs to larger DNNs.

Video datasets We evaluate our system on the vehicle detection task on highways
identifying classes such as “cars”, “buses”, “motorbikes”, and “trucks”. Like in
DDS (Du et al. 2020), we pick three publicly available 10min traffic videos (around
9K frames each) at 720p resolution. We extract and replay video frames at different
frame rates to generate requests for clients.

Evaluation metrics We evaluate the system using the following performance
metrics:

•	 Miss rate: The miss rate describes the fraction of frames that have missed their
SLOs or have been dropped early in the pipeline due to SLO violations.

•	 Analytics accuracy: We use the F1 score (a harmonic mean of precision and
recall) with IoU (intersection over union) of 0.5 as a metric to quantify analytics
accuracy, which is consistent with earlier works like VideoStorm (Zhang et al.
2017), Chameleon (Jiang et al. 2018), AWStream (Zhang et al. 2018a), and
DDS (Du et al. 2020). We exclude missed frames as it is hard to quantify their
impact on the user application. Similar to DeepDecision (Ran et al. 2018) and
DDS (Du et al. 2020), we use the detection results of the DNN whose input size
is equal to that of the original video as ground truth.

•	 Worker Utilization: The worker utilization is the fraction of the total time during
which workers are busy executing the DNN inferences on GPUs.

1 3

Real-Time Systems	

7.2 � End‑to‑end performance

We first analyze the end-to-end performance of Jellyfish under a synthetic network
trace. Following AWStream (Zhang et al. 2018a), we periodically set each client’s
bandwidth to a value from the ordered set {20, 15, 10, 7.5}Mbps and keep each
value for 20 seconds. We test with {1, 2, 4, 8} concurrent clients and draw their
SLOs from the set of {75, 100, 150} milliseconds (ms) and request rates from the
set of {15, 25} FPS. The smallest DNN in the DNN zoo has P99 latency of 23ms for
batch size 1. Thus, we have a lower limit of 75ms (instead of 50ms) in the SLOs set
for each client because the minimum time budget for computing on the server must
be 46ms (twice the latency of the smallest DNN, see Eq. (6)). Next, we start clients
sequentially with a small random wait (in [1, 10]s) between two clients, mimick-
ing random client arrivals/departures and creating a random requests arrival pattern.
The clients replay the same network trace but start from random points to avoid a
lock-step behavior. We run each experiment for three iterations and report the mean
value. Note that mostly two parallel DNNs are selected on two GPUs for serving
clients at any given moment.

DNN adaptation Fig. 11(bottom) depicts the estimated bandwidth values close to
the actual bandwidth limits, displaying the accuracy of our bandwidth estimation.
Figure 11(top) illustrates DNN selection decisions for each client in a setting with
two clients. It shows that larger DNNs are selected when the bandwidth is higher
and vice-versa, implying DNN adaptation.

In Fig. 11(bottom), we observe that the error gap between estimated and actual
bandwidth values increases with the actual bandwidth. Two main factors influ-
ence this error gap: (a) As we use the Linux tc utility to replay network bandwidth
traces, the difference between the effective bandwidth achieved by the tc utility
and the actual bandwidth widens with higher actual bandwidth values, leading to
an increased error gap in the bandwidth estimation. However, we expect this behav-
ior to be absent in real-world scenarios. (b) Our bandwidth estimation technique
relies on the acknowledgment-based mechanism that introduces extra host delays
(1-3 ms) on the server side. As the actual bandwidth increases, the impact of these

Fig. 11   DNN selection for each client in a setting (two clients, 25 FPS, 100ms SLO) under a synthetic
network trace. Red dots indicate dropped frames

	 Real-Time Systems

1 3

host delays on network time estimation becomes more significant, resulting in a
wider gap between estimated and actual bandwidth values. Note that for real-world
network traces, the estimated bandwidth values may not match precisely the actual
bandwidth values since we use the harmonic mean of frequently changing past
bandwidth values.

When the error gap is large, Jellyfish adopts a conservative approach. It assumes
that requests will spend more time on the network, resulting in low latency budgets
on the server. As a result, the Jellyfish scheduler selects relatively smaller DNNs,
slightly degrading the accuracy while maintaining the low miss rates.

Miss rate Fig. 12(top) shows that the overall miss rate is less than 1% for almost
all settings. We make three observations: (a) The miss rate for settings with 150ms
SLO is the lowest due to the high compute time budget available on the edge server.
(b) The miss rate is relatively high (1.153%) for the setting with 100ms SLO, 15
FPS, and 8 clients. Here, the scheduler often selects two DNNs: a small one with
a moderate batch size (e.g., DNN index 3 with batch size 3, throughput around 90
FPS) and a large one with a small batch size (e.g., DNN index 9 with batch size
1, throughput around 32 FPS). Hence, many clients (e.g., around 6 with an aggre-
gate request rate of 90 FPS) are served by the small DNN. Thus, the small DNN
is heavily loaded and the requests served by this DNN are more sensitive to the
micro-bursts of requests created by nonuniform request arrival. On the contrary, and
perhaps counterintuitive, for the setting with 25 FPS and with the same SLO and
number of clients as in the 15 FPS setting, the miss rates are slightly lower. This
is because Jellyfish often selects smaller DNNs with higher throughput to handle
higher aggregate request rates (i.e., 200 FPS vs. 120 FPS). As a result, selecting

Fig. 12   The miss rate, accuracy and worker utilization of Jellyfish for varying SLOs, request rates, and
numbers of clients under a synthetic network trace. We truncate the Y-axis(top) to 1% to focus on the
extremely low values ( ≤ 1 %) observed in almost all experimental settings

1 3

Real-Time Systems	

smaller DNN models for the same latency SLO provides more slack in the latency
budget per request on the server. This extra slack enables requests to wait longer in
the queue without being dropped, thereby helping to alleviate the issue with non-
uniform request arrival. (c) The miss rate is unacceptable (15.427%) for the setting
with 75ms SLO, 25 FPS, and 8 clients, which represents an overloaded situation.
To support the aggregate request rate of 200 FPS of 8 clients with 75ms SLO, the
scheduler must select the smallest DNN on each GPU with batch size 4 (the DNN
latency and throughput being 32ms and 124 FPS, respectively). That means the cli-
ents require a time budget of at least 64ms for computing, which is impossible when
the client’s bandwidth is low (i.e., 7.5Mbps). Thus, the scheduler often selects the
batch size of 4 and 3 on each GPU, with the total inference throughput being slightly
lower than the aggregate request rate, leaving one client unmapped to any of the
DNNs. Overall, Jellyfish delivers an extremely low miss rate ( ≤ 1 %) when the system
is not overloaded.

Furthermore, we expect the miss rates (and accuracy) for the 1 client and
2 clients settings to be comparable due to the similarity in the distributions
of DNNs selected by the scheduler. However, in our current Python-based
implementation, the miss rate for the 1 client setting is slightly higher. In the 1
client setting, only one GPU (and the associated GPU worker) is active at any
given moment, as dictated by the scheduler. We observe that when a GPU worker
on our multi-GPU setup is not active for an extended period of time, the few
subsequent inference requests on that GPU worker experience occasional delays.
These delays occur during the retrieval of inference requests from the dispatch
queue, fetching active model information from the loader thread, or executing the
initial DNN inference on the GPU after a prolonged idle interval. We attribute
these delays to the internal operations of commodity servers, which employ best-
effort process/queue management and scheduling. While we observe these delays
often in the 1 client setting, they are rare and have minimal impact, causing
only slightly higher miss rates. Such occasional delays are one of the reasons
that providing hard guarantees for the end-to-end latency SLO is challenging,
especially on commodity setups. As discussed in Sect. 9.1, we expect system
maintainers to tune the system for maximum predictability and stability when
deploying Jellyfish-like serving systems.

Analytics accuracy Fig. 12(middle) shows the accuracy of all settings. The
settings with one or two clients have similar accuracy since requests are served with
similar DNNs. The accuracy decreases when the aggregate request rate increases.
Here, the aggregate request rate can increase when the number of clients or their
frame rate increases. In this case, the scheduler has to lower the DNNs sizes to
support the higher request rates. However, with larger SLOs, the scheduler can
select larger DNNs when possible. Consequently, the accuracy at 150ms SLO for
all settings is higher than that at 100ms or 75ms SLOs. Overall, for all settings, the
accuracy achieved by Jellyfish is much higher than that achieved by the smallest
DNN (i.e., the DNN likely to be deployed directly on client devices), demonstrating
the benefits of offloading inference tasks to the edge server, albeit dynamic networks.

Worker utilization Fig. 12(bottom) shows the aggregate worker utilization ratio.
The utilization is lower for settings with fewer clients and lower FPS due to lower

	 Real-Time Systems

1 3

aggregate request rates and larger arrival times between requests. Once the system
becomes more saturated with more clients and higher SLOs, the utilization increases
(up to 75%) because Jellyfish tends to select larger batch sizes and DNNs, thus
increasing the compute usage.

Furthermore, there are some settings where the utilization can be slightly lower
for higher aggregate request rates. For instance, in a specific setting with 15 FPS,
150ms SLO, and 4 clients, the scheduler often selects large DNNs with a small
batch size (e.g., DNNs with indices 11, 9, and 7 and batch size 1). In contrast, for
the setting with 25 FPS, 150ms SLO, and 4 clients, the scheduler selects relatively
smaller DNNs with large batch sizes (e.g., DNNs with indices 7, 5, and 4 and batch
sizes 3, 4, and 5, respectively), mainly to achieve higher throughput. Because of
the smaller DNNs in the latter setting, there is more slack in the latency budget per
request on the server since the number of clients and SLOs are the same. There-
fore, the DNN executor can afford to wait longer for the requests to arrive without
violating the latency constraint, allowing it to fill the batch with the desired size.
This longer waiting time results in the DNN executor doing relatively less work and
slightly more waiting compared to the setting with 15 FPS. Hence, in this particular
case, the utilization could be slightly lower. Overall, the experiment confirms that
Jellyfish ’s low miss rates are not at the cost of reduced worker utilization.

End-to-end latency Fig. 13 shows the end-to-end latency CDF for all settings
except for a setting with 1 client, which performs similarly to the setting with
2 clients. We see that the median latency increases for all clients when the SLO
increases as the scheduler selects larger DNNs. For example, the median latency
is 53.77ms with two clients, 15 FPS, and 100ms SLO, whereas it is 84.62ms with
15 FPS and 150ms SLO. Although the median latency is much lower (queuing
time is assumed equal to the DNN inference time), the P99 latency is close to the
SLO, especially for settings with many clients where the queuing time is high. This
confirms the importance of using higher (e.g., P99) DNN latency profiles and the
assumption of worst-case queuing time for low miss rates.

In a nutshell, Jellyfish can fulfill the goal of delivering low miss rates while
maintaining high accuracy (Q1).

Fig. 13   End-to-end latency CDF for varying SLOs, request rates, and numbers of clients under a syn-
thetic network trace

1 3

Real-Time Systems	

7.3 � Comparison with the baselines

Baseline Inspired by Clockwork (Gujarati et al. 2020), we implement a fine-grained
baseline scheduler based on the earliest deadline first (EDF) policy. The idea is to
deploy a static DNN on all GPUs and schedule requests with the earliest deadline
without preemption on the next available GPU worker. Similar to Clockwork, for
batching requests adaptively, we maintain a global priority queue per batch size
where new requests are added to every batch queue. The priority of a request in
a batch queue is determined by the earliest time to schedule the request at the
respective batch size. We then schedule requests from each batch queue with a
sufficient number of requests by iterating through batch queues in the decreasing
order of batch size. The requests are dropped from the particular batch queue when
the time budget is insufficient for DNN execution. Here, the system design and
implementation are similar to our setup except for the scheduling logic, as we focus
our comparison on scheduling algorithms. More importantly, our network time
estimation helps to compute the variable network time and the variable compute
time budget per request on the server, which is then used as a deadline for the EDF
policy.

Fig. 14   Illustration of DNN adaptation for a client in a setting (2 clients, 25 FPS, 100ms SLO) with WiFi
and LTE traces. Red dots mark dropped frames

Fig. 15   Comparison of Jellyfish with baselines. B_M and B_H have excessive SLO violations making
them ineffective, while B_L suffers from low accuracy

	 Real-Time Systems

1 3

Further, we enable data adaptation on clients. The adaptation policy picks the
maximum possible frame resolution below the input size of the chosen DNN to
maintain a stable network throughput. This policy is similar to AWStream (Zhang
et al. 2018a) (for the frame resolution) and offers optimal adaptation because the
DNN accuracy is a monotonic function of the frame resolution (see Fig. 10).

We compare Jellyfish with three variants of the baseline by deploying the low-
est (B_L), middle (B_M), and highest (B_H) DNNs in terms of accuracy (also
size). Similar to Sect. 7.2, we test around 18 experimental settings with a combi-
nation of {2, 4, 8} concurrent clients, {75, 100, 150}ms SLO and {15, 25} FPS.
Along with a synthetic network trace, we also compare the performance on two
real-world network traces: a WiFi network trace and a 4 G/LTE downlink band-
width trace (van der Hooft et al. 2016) downscaled by a factor of two to represent
the uplink bandwidth (Huang et al. 2012). The WiFi trace has a higher median
bandwidth value (53.1 vs. 22.8 Mbps) than the LTE trace, exhibiting high and
low bandwidth environments. In addition, the WiFi trace has a much narrower
spread (19.6 vs. 38.51 interquartile range) than the LTE trace, indicating that the
LTE network is a highly dynamic and hostile environment. Fig. 14(bottom) shows
the estimated and actual bandwidth values. Figure 14(top) shows the DNN selec-
tion decisions for one client under the two real-world network traces, indicating
that Jellyfish adapts quickly to bandwidth changes.

Results and discussion Fig. 15 shows the performance of Jellyfish against the
baselines under three different network traces. Jellyfish consistently has the over-
all miss rates below 1% for the synthetic and WiFi trace and below 1.5% for the
LTE trace except for one setting (75ms SLO, 25 FPS, and 8 clients) where at
least one client cannot be mapped to any DNN (explained in Sect. 7.2). Jellyfish
achieves decent accuracy for settings with large SLOs and low aggregate request
rates under the WiFi trace, on par with B_H. This is because the bandwidth values
are generally high (median value 53.1Mbps) under WiFi, leaving a large compute
time budget on the server. For B_L, the network is never a bottleneck because the
smallest frame size, 128 × 128 at 25 FPS, needs only 2Mbps bandwidth. Besides,
two B_L instances can support the aggregate request rate in all settings. Thus, the
miss rates for B_L are negligible but at the cost of the lowest accuracy. B_H is

Table 2   Performance of Jellyfish and B_M with heterogeneous clients

Network Trace #Clients Jellyfish B_M

Miss Rate (%) F1 Score Miss Rate (%) F1 Score

Synthetic 4 0.182 0.5737 15.510 0.7418
8 0.648 0.5459 35.006 0.7440

LTE 4 0.952 0.5810 11.782 0.7457
8 1.618 0.5456 31.936 0.7462

WiFi 4 0.622 0.6747 0.278 0.7577
8 0.825 0.6264 23.17 0.7579

1 3

Real-Time Systems	

the worst in terms of inference throughput and bandwidth requirement (26Mbps).
Hence, B_H has the highest miss rate for almost all settings.

B_M has better performance than other baselines but fails to provide consist-
ency like Jellyfish does for all settings. B_M has high miss rates in the following
two cases: (a) Low SLOs and low request rates: Clients need around 7Mbps to send
frames at the desired size ( 354 × 354 ) and 15 FPS. Clients do not face any network
bottleneck, especially under synthetic and WiFi traces, and thus can always send
frames at the desired size. Yet, sending at the desired frame size results in significant
network time (up to 60ms), leaving a very small compute time budget on the server,
especially when the bandwidth drops below 10Mbps. Hence, the miss rates are
around 40%, indicating the necessity of aligning the data and DNN adaptation deci-
sions. On the other hand, clients sending at 25 FPS need about 11Mbps, and there-
fore, clients would lower frame sizes (data adaptation) to maintain stable network
throughput. Due to the data adaptation, the network time is significantly reduced,
leaving enough compute time budget on the server for the inference. (b) High aggre-
gate request rates: The scheduler has to increase the batch size to support many
clients (or their high aggregate frame rates), but at increased compute time, which
hurts settings without sufficient SLOs. Therefore, B_M has high miss rates for 4 and
8 clients with SLOs under 150ms.

Furthermore, as we consider the F1 score of only the processed requests, the
accuracy of B_M and B_H is higher than Jellyfish in some settings but at the cost
of extremely high miss rates. Note that the gap in accuracy between Jellyfish and
baselines B_M and B_H decreases when the SLO increases as the scheduler tends to
select larger DNNs.

Heterogeneous clients We also experiment with heterogeneous clients, i.e., clients
with varying combinations of request rates (FPS) and SLOs in one setting. Table 2
shows the performance of Jellyfish and B_M for heterogeneous clients under three
different network traces. Under the LTE trace, the baseline B_M has a miss rate of
11.78% for 4 clients and 31.94% for 8 clients. In contrast, Jellyfish has a miss rate
of 0.95% for 4 clients and 1.62% for 8 clients, in line with the results in Fig. 15 for
homogeneous clients. Similar results hold for the synthetic and WiFi network traces.
Note that as we consider the F1 score of only the processed requests, the accuracy of
B_M is higher than Jellyfish but at the cost of extremely high miss rates.

In summary, Jellyfish consistently outperforms baselines in terms of miss rates
and maximizes the accuracy whenever a larger compute time budget is available
(Q2).

7.4 � Performance of joint adaptation

In Sect. 7.3, we see that the miss rates are significantly higher for the baselines that
do not perform DNN adaptation, even when using data adaptation. We now inves-
tigate the impact of joint adaptation, i.e., the combination of data and DNN adap-
tation. To this end, we enable or disable the two system adaptation components
independently and analyze the impact of each combination on the overall Jellyfish

	 Real-Time Systems

1 3

performance. For the data adaptation, we further consider three scenarios for which
we provide modified implementations:

•	 No data adaptation (DAoff) , i.e., simply streaming data from clients at a prede-
fined fixed size. Specifically, we choose the input size of the middle DNN, i.e.,
354 × 354 , which provides a good tradeoff between bandwidth requirement and
accuracy. Here, the scheduler knows the data size and treats it as a constant dur-
ing DNN adaptation.

•	 Default data adaptation (DAbw) with typical network bandwidth awareness to
maintain stable network throughput (Zhang et al. 2018a). Here, the current net-
work condition is considered but no knowledge about the DNN adaptation com-
ponent is provided. In this scenario, we have to statically allocate some percent-
age of the end-to-end SLO as a compute time budget for the DNN adaptation.
For our experiments, we choose 50% and 75% heuristically. We cannot allocate
25% of SLO as a compute time budget because no DNNs are feasible to execute
for the 75ms and 100ms SLO settings.

•	 SLO-aware data adaptation (DAslo) that optimizes the data adaptation strategy
to also consider the network time budget. Here, the data adaptation is aware that
a part of the end-to-end SLO has been statically allocated for the DNN adapta-
tion. Hence, it attempts to deliver the data to the server in the remaining time to
achieve low miss rates considering the network time budget in addition to the
current network bandwidth.

Similar to Sect. 7.2, we use 18 experimental settings on synthetic network trace for
performance comparison.

Results and discussion We show the results in Fig. 16. (a) For no data adaptation
( DAoff ), the miss rates are extremely high in almost all settings as expected. (b) For
default data adaptation ( DAbw ), the miss rates are lower than DAoff for settings with
higher SLOs. However, compared to Jellyfish, DAbw still has higher miss rates and
lower accuracy, especially for settings with lower SLOs (75ms and 100ms). Note
that when the compute time budget is 50% of the SLO, no DNN is selected for the

Fig. 16   The impact of the three data adaptation strategies on Jellyfish ’s performance under a synthetic
network trace. The label DA means data adaptation, and CB

x% means x% of SLO allocated as a compute
time budget. The x-axis is in log scale

1 3

Real-Time Systems	

75ms SLO which results in a 100% miss rate. (c) For SLO-aware data adaptation
( DAslo ), the miss rates are comparable to Jellyfish, but the accuracy is significantly
lower for a compute time budget of 50% of the end-to-end SLO ( CB50% ). The accu-
racy of DAslo is on par with Jellyfish for a compute time budget of 75% of the SLO
( CB75% ). In the case of DAslo and CB75% , the frames are streamed at a lower resolu-
tion (due to a low network time budget) and upscaled on the server for serving with
bigger DNNs. While the task we consider in the experiments (vehicle detection) is
not obviously sensitive to quality degradation from frame upscaling, that behaviour
may not hold for other tasks (e.g., semantic segmentation), DNN architectures, and
data content (Dai et al. 2016). Furthermore, the accuracy depends on the manual
selection of a static budget allocation (50% or 75%) between data and DNN adapta-
tion, and the optimal value can be hard to decide in practice. Jellyfish automatically
and dynamically allocates the time budget between data and DNN adaptation.

In summary, joint adaptation is crucial for achieving low miss rates with optimal
accuracy—Jellyfish’s dynamic allocation of time budget between data and DNN
adaptation and alignment of adaptation decisions allow for a consistently high
performance without manual system configurations.

7.5 � Large‑scale setup

We also evaluate Jellyfish on a large-scale distributed cloud setup. Specifically, we
run the dispatcher on an AWS compute instance c5.9xlarge, 8 workers on 8
g4dn.2xlarge instances equipped with T4 NVIDIA GPUs and 8 t3.2xlarge
instances to emulate up to 32 clients. Here, we test Jellyfish with varying numbers
of clients for {100, 150}ms SLOs and 15 FPS on the LTE trace. We choose an FPS
of 15 to support a large number of clients without introducing a throughput bottle-
neck on the server and to offer enough leeway for DNN adaptation. The latency pro-
file patterns remain proportional to the one in Fig. 10. We use only the smallest ten
DNNs since larger DNNs have much lower throughput, making them inefficient in
this setup. Note that T4 GPUs have a low power limit of 70W. Therefore, even after
fixing the clock values, power throttling leads to rather unstable inference timings,
which can negatively affect the performance of Jellyfish.

Figure 17 shows that the miss rates are less than 1.73% for an SLO of 150ms
and 3% for 100ms. For 100ms SLO and 32 clients, the scheduler selects relatively
smaller DNNs than 24 clients to support the aggregate request rate (480 FPS). The

Fig. 17   The miss rate on 8 GPUs for varying numbers of clients operating at 15 FPS with the dynamic
LTE trace

	 Real-Time Systems

1 3

scheduler may then assign many clients to the smaller DNNs. As mentioned in
Sect. 7.2, many clients assigned to the same DNN might distort the uniformity of
the request arrival pattern and thus lead to increased request misses when the infer-
ence timings are unstable. However, the miss rate improves with the increase of the
SLO (e.g., 150ms), due to increased compute time budget that can mask the unsta-
ble timings. We observe no particular trend in the miss rate when the number of
clients increases as the miss rate depends on the complex dynamics of client charac-
teristics and DNN performance profiles. Overall, Jellyfish achieves miss rates within
the acceptable range ( 1 − 3% ), even on a large-scale setup (Q3).

7.6 � Scheduler performance

We evaluate the Jellyfish scheduler performance through simulations, comparing
it with the optimal MILP algorithm. We run the algorithms with multiple settings
spanning {2, 4, 8, 16} GPUs and the number of clients with a factor of {4, 6, 8, 10}
times the number of GPUs. Each client randomly draws its request rate from {10,
15, 25} and SLO from {75, 100, 150}ms and its bandwidth is chosen uniformly at
random from the interval [7.5, 50) Mbps. We use the same DNN profiles as depicted
in Fig. 10. We run around 100 problem instances for each setting. The solution qual-
ity of each algorithm is measured by the accuracy objective defined in Eq. 2. We
then use the approximation ratio between our algorithm and the MILP algorithm as
a comparative metric.

Approximation ratio Fig. 18a shows the mean approximation ratio for 2 and 4
GPUs. The MILP algorithm could not return enough optimal solutions for settings
with {8, 16} GPUs and 40 clients on 4 GPUs, even after specifying the time limit
of 30 minutes for each problem instance. It can be observed that our scheduling
algorithm is near-optimal, with an approximation ratio ranging from 0.966 to 0.996.

(a) Approximation ratio (mean) (b) Execution time in log scale

Fig. 18   Performance of Jellyfish scheduler for varying #GPUs and #clients. Here, the #clients is a prod-
uct of Clients Scale Factor (x-axis) and #GPUs

1 3

Real-Time Systems	

Execution time As depicted in Fig. 18b, our naive Python implementation of the
Jellyfish scheduler has a sub-second execution time for up to 8 GPUs and clients scale
factor of 6. With the increase of the GPUs and the clients scale factor, the execution
time increases almost linearly. Overall, it is practical to run our scheduler at a high fre-
quency for handling high network dynamics in typical edge scenarios.

7.7 � DNN prefetching performance

We also analyze the effectiveness of the DNN prefetching strategy. We consider the
same settings under the two real-world network traces, where DNNs must be adapted
more often to handle frequently changing bandwidth. In this case, the DNN hit ratio is
around 92.37% when five DNNs (out of 16) and 83.61% when only three DNNs are
prefetched at a time. On our setup, such a hit ratio translates to a maximum gain of 3%
in processing requests precisely with the newly selected DNN. The gain is not high due
to the minimal cost of moving DNNs on our GPU setup (150-200ms). However, we
anticipate the gain to be substantial for large state-of-the-art DNNs. The high hit ratio
confirms the effectiveness of the nearest-neighbor prefetching and our DNN update
method.

8 � Preliminary evaluation with dynamic DNNs

After demonstrating the effectiveness of Jellyfish with the bag-of-models technique,
we now evaluate dynamic DNNs in Jellyfish. We implement a dynamic DNN for
the real-world object detection task using a transformer-based vision model called
DETR (Carion et al. 2020). The architecture of the DETR model consists of two parts,
the backbone part (e.g., ResNet50, a convolutional neural network) extracting features
and the transformer part (as object detection head) predicting bounding boxes and
classes from the features extracted by the backbone.

8.1 � Evaluation setups

DNN variants In our experiment, we replace the static ResNet50 backbone part of
the DETR model with the dynamic OFA-ResNet50 (once-for-all architecture) (Cai
et al. 2020), which allows us to switch between different sub-networks of the OFA-
ResNet50 dynamically on-the-fly. Similar to Sect. 7, we consider 16 DNN variants
or sub-networks in OFA-ResNet50, supporting 16 different input (data) sizes (in
both spatial dimensions) from 128 to 608 with a step size of 32. We then add one
transformer block as an object detection head to all 16 OFA-ResNet50 sub-networks
(backbones), generating 16 OFA-ResNet50-DETR variants. The latency and
throughput profiles of every OFA-ResNet50-DETR variant are similar to the profiles
of YOLOv4 DNNs (see Sect. 7.1). That means the latency of a smaller DNN size
(smaller input size) is lower than that of a bigger DNN size. To profile the latency
of a DNN variant in the dynamic DNN for a particular batch size, we consider the
worst-case execution latency which is when all the requests in the batch exit from

	 Real-Time Systems

1 3

the final exit branch. In addition, we assume that the accuracy characteristics of our
16 OFA-ResNet50-DETR variants are similar to that of YOLOv4 DNNs, meaning
that the accuracy increases monotonically with the DNN input size. Note that, as
benchmarked in (Sreedhar et al. 2022; Samplawski and Marlin 2021), the DETR
model’s backbone part is relatively more expensive in computation (60%-90% of
the total execution time) than the transformer part (10%-40% of the total execution
time) depending on the input size and batch size used. Hence, we do not consider a
dynamic architecture for the transformer block in this work.

We compare the performance of dynamic DNN variants with their static
counterparts. The static DNN variants are equivalent to the dynamic DNN variants
(sub-networks) in terms of model architecture (backbone and transformer block) and
parameters, except that they have only one main exit branch (transformer block).
The size of the parameters for each of the 16 static DNN variants ranges in [132.66,
215.94] MB, with a median value of 167.68 MB. In comparison, the size of the
parameters of the dynamic DNN (embedding 16 or more sub-networks) is only
262.70 MB, which is 10 times lower than the total size of the 16 static DNN variants
and just 56.6% larger than the median value for static DNN variants. Even if we
add an early exit branch to the dynamic DNN variant, the size of the parameters is
only 287.01 MB, making the dynamic DNN a highly parameter-efficient collection
of DNN variants. Furthermore, the execution latencies of dynamic DNN variants
are nearly identical to that of their static counterparts. The median value of the
difference between the execution latencies of dynamic DNN variants and static
DNN variants across all the batch sizes is just 0.817 ms with an interquartile range
of 1.32 ms. For the execution latencies of dynamic DNN variants with the early-exit
branches, see Sect. 8.3.

Implementation and setup We integrate our OFA-ResNet50-DETR dynamic
DNN into Jellyfish and perform preliminary experiments. Similar to Jellyfish, we
implement the components of our dynamic DNN in Python and PyTorch framework
for DNN execution, as DETR (Carion et al. 2020) and OFA (Cai et al. 2020)
implementations are also publicly available in the same frameworks. We use the
same hardware and software setups for the server and clients as described in Sect. 6,
except that we use only one GPU on the server because we are primarily interested
in the DNN switching cost and the early-exit performance of DNNs selected on a
GPU and to avoid the influence of DNN selection decisions made across GPUs by
the Jellyfish scheduler in the case of multi-GPU setup. In addition, we use one traffic
video from the video dataset (see Sect. 7.1) and replay video frames at different
frame rates as the client requests. As we primarily focus on the execution efficiency
of the dynamic DNN variants, we do not train the OFA-ResNet50-DETR variants
and consider it as future work.

8.2 � Impact on DNN adaptation

To evaluate the performance of dynamic DNNs with respect to adaptation, we test
different experimental settings with {1, 2, 4} clients, SLOs from the set of {50,
100, 150} milliseconds (ms), request rates (frames per second) from the set of

1 3

Real-Time Systems	

{15, 30} FPS. To emulate dynamic network conditions, we use the two real-world
network traces (i.e., LTE and WiFi) as mentioned in Sect. 7.3. Finally, we disable
the DNN caching mechanism of Jellyfish.

Evaluation metric It is non-trivial to isolate and measure the impact of DNN
adaptation through main metrics (i.e., the accuracy and miss rates, as defined in
Sect. 7.1) because of the interplay between various factors that affect these metrics.
For example, a slight difference in the latency profiles between static and dynamic
DNNs can lead to the selection of different DNN variants for execution, affecting
the accuracy and/or end-to-end latency of clients. Hence, we define a specific metric
called mismatch count. The mismatch count metric indicates the number of newly
arrived inference requests (or frames) executed using the old DNN variant due to
the delay in the DNN adaptation process. Such a mismatch may negatively affect the
miss rate when new frames are executed with the old but bigger DNN variant, and it
may degrade accuracy when new frames are executed with the old but smaller DNN
variant.

Figure 19 shows the number of mismatches observed when static DNNs are used.
We do not plot numbers for the dynamic DNNs, as all values are almost always
zero. In the case of static DNNs, the larger SLOs have a higher mismatch count
because they provide more room for DNN adaptation. The mismatch count is further
exacerbated when the aggregate request rate increases due to the increase in the
number of clients or their inference request rates. Furthermore, the mismatch count
is higher under the LTE trace because of the low bandwidth values (median value
14.07 Mbps) and comparatively large variations.

Fig. 19   Number of mismatches that occur when the newly arrived frames from clients are executed with
the old DNN variant due to the delay in switching to the new active DNN variant. Here, we see that static
DNN variants can lead to a significant number of mismatches, whereas dynamic DNN has zero mis-
matches in almost all cases (thus skipped in the figure)

	 Real-Time Systems

1 3

On the other hand, the mismatch count for dynamic DNNs is zero for almost all
settings. When the mismatch count is not zero, the value is small and negligible
compared to that with the static DNNs. For example, for the worst-case setting with
4 clients, 150 ms SLO and 30 FPS under the LTE trace, the mismatch count for
dynamic DNNs is only 64, whereas the mismatch count for static DNNs is 953. The
small mismatch count in dynamic DNNs can be attributed to the way Jellyfish han-
dles pending requests in the queue before adapting it to the new active DNN variant.
Specifically, Jellyfish waits for sufficient requests to arrive (to fill the batch) before it
can drain the pending requests with the old DNN variant, leading some new requests
to be executed with the old DNN variant.

In summary, the negligible mismatch count shows that the dynamic DNN quickly
adapts to the DNN variant desired by the scheduler of inference serving systems and
removes the need for DNN caching.

8.3 � Early‑exit performance

We add a small transformer block (an object detection head) with only three encoder
and decoder layers as an exit branch to the dynamic OFA-ResNet50-DETR model
(see Fig. 9). This exit branch is inserted after the second ResNet block of the OFA-
ResNet50-DETR DNN and is reused for all 16 DNN variants of the dynamic DNN.
To simulate different early-exit scenarios, we assign exit probabilities to the first
exit branch of 16 DNN variants uniformly from the synthetic set {0.25, 0.30, 0.35,
0.40}, indicating the percentage of requests exiting from that branch. The smaller
(bigger) DNN variants have lower (higher) exit probabilities.

We first evaluate the execution latency of four DNN variants sampled uniformly
from the OFA-ResNet50-DETR model. The exit probabilities of these four DNN
variants at the first exit branch are 0.25, 0.30, 0.35, 0.40, respectively. We run each
DNN variant for eight different batch sizes and for 1K iterations per batch size.

Fig. 20   The performance of DNN variants with early-exit technique compared to the no early-exit DNN
variants. We sample four DNN variants uniformly from the set of 16 DNN variants

1 3

Real-Time Systems	

The violin plot in Fig. 20 shows the performance of four sampled DNN vari-
ants with and without the early-exit technique. DNN variants without the early-exit
branch have steady execution latency and, thus, have only one density area centred
around a very narrow range. On the other hand, DNN variants with the early-exit
branch have two density areas displaying the latency timings of requests exiting at
two exit branches. The median latency is higher for smaller DNNs or smaller batch
sizes because of the extra time required to execute the additional exit branch. For
bigger DNNs and larger batch sizes, the median execution latency of the early-exit
DNN variant is lower than that without early-exit. This is because bigger DNNs
have higher exit probabilities, and thus more requests exit at the first branch, causing
a significant reduction in the overall batch inference time. Further, even under low
exit probabilities (such as 0.30 for DNN index 5), the reductions are noteworthy at
large batch sizes. This demonstrates a potential for a substantial reduction in batch
inference time even when only a few requests exit (low exit probability) with large
batch sizes, thereby amortizing the overall inference serving latency.

We now evaluate the performance by incorporating early-exit DNN variants in
Jellyfish. We test different experimental settings with varying numbers of clients,
SLOs, and request rates under the WiFi trace. We choose WiFi trace as it has higher
bandwidth (median value 53.1Mbps) than the LTE one, allowing the scheduler to
select bigger DNN variants that can benefit from the early-exit performance.

Figure 21 shows the end-to-end latency per request with and without the early-
exit branch. In many settings, the median end-to-end latency in the case of early-exit
DNN variants is lower than that of the case without the early-exit branch. However,
we observe that this does not always indicate that the early-exit technique offers low
end-to-end latency. This is because the 16 DNN variants have different latency pro-
files with and without the early-exit branch. The early-exit DNN variants have higher
latency profile values due to the additional time spent at the first early-exit branch.
As a result, for the early-exit case, the scheduler may select smaller DNN variants
leading to lower execution latency. Hence, the selection of smaller DNN variants

Fig. 21   End-to-end latency observed when DNN variants are deployed with and without early-exit tech-
nique for varying SLOs, request rates (FPS) and numbers of clients under a WiFi network trace

	 Real-Time Systems

1 3

can also potentially lower the median value, making it hard to isolate the actual rea-
son for the improvement. We leave the detailed analysis to future exploration.

9 � Further discussion and limitations

9.1 � Jellyfish

This section discusses the limitations and directions for future work to improve
Jellyfish further.

Request rate adaptation Similar to Chameleon (Jiang et al. 2018) and
DeepDecision (Ran et al. 2018), Jellyfish does not adapt the request (frame) rate and
we consider it as future work. The plan is to decouple the request rate adaptation
decision from the server-side scheduling and leave the decision up to the client.
Such an approach may help with Jellyfish scalability.

Predictability Generally, we assume that DNN inference latency is predictable
and invariably remains stable. Yet, in practice, especially on commodity hardware
and software, it is hard to maintain stable performance without having a detailed
understanding of the system’s internals. We expect the service providers to tune the
system in favor of stability than speed.

Latency budget estimation Our latency (compute) budget estimation currently
depends on predicting accurately the client’s bandwidth and the data size of
the video frames. With image encoding such as JPEG and PNG, the compressed
size depends on the changing content of the image, which affects the estimation
of network time. We plan to explore the more advanced bandwidth estimation
techniques and frame/video compression scheme with a constant compression ratio.

Accuracy optimization Jellyfish aims to optimize for accuracy by selecting the
best possible DNN variants from the collection (bag) of diverse DNNs for the
current system conditions. Therefore, we expect that the effective accuracy achieved
by the clients (assuming they are successfully mapped to DNNs) will be bounded.
The smallest DNN and the largest DNN in the collection determine the minimum
and maximum accuracy values. The degradation of accuracy depends on the
distribution (spread) of accuracy values (profiles) among the DNN models in the
collection. When the minimum accuracy (determined by the smallest DNN model)
is not acceptable to the broad range of users, the system designer can attempt to
optimize the serving by improving the minimum accuracy and narrowing down
the spread in the accuracy by choosing the collection of DNN variants prudently.
One can select the collection of fine-grained DNN models - easily achievable using
dynamic DNNs - to increase the space of DNN models and narrow the accuracy
spread.

Accuracy constraint Jellyfish can easily support the addition of constraints
on the desired minimum accuracy per client. Our scheduler can be extended to
support such accuracy constraints by setting the latency budgets of clients to zero
for DNNs whose accuracy is lower than the desired value. However, clients may
not be mapped to any DNN variant during runtime if they provide a greater desired
value on the accuracy constraint. When clients cannot be mapped to any DNN

1 3

Real-Time Systems	

due to either accuracy constraints or stricter latency or extremely low bandwidth
conditions, we must implement a component on the client side to execute requests
locally, provided that clients have sufficient compute resources for inference with
optimized/compressed DNNs.

Client adapter As mentioned in Sect. 3.2, Jellyfish requires client support to
facilitate data adaptation, bandwidth estimation, and metadata piggybacking, which
is typical for adaptive-video-analytics systems. Hence, providing client-side adapters
or skeleton code for multiple languages will help ease the application development.

Unreliable communication network In this paper, we do not explicitly tackle
the unreliability of the communication network. However, the client and server
communication in our current implementation is handled using gRPC. We, therefore,
rely on the gRPC-TCP’s reliability feature to manage message loss/drop conditions.
There can be delays in message delivery which can delay the data adaptation
process with the correct size. Such delays can then lead to a mismatch between the
data size and the DNN size on the server, subsequently impacting the application
performance. However, we anticipate that these delays will be considered when
estimating the bandwidth, and therefore the Jellyfish scheduler will handle such
conditions in the next scheduling round. Additionally, we piggyback the metadata
(e.g., data/input size) on every response to the client. As a result, clients can recover
from unreliable conditions as soon as the connection stabilizes.

9.2 � Dynamic DNNs

In this section, we discuss the limitations and future work of our proposal on
leveraging dynamic DNNs to avoid DNN switching costs and improve the
performance of batched inference.

Controlled experiments We evaluated our proposal for combining the network
pruning and early-exit techniques in the Jellyfish framework. However, as discussed
in the evaluation section, it is hard to isolate the actual reason for the performance
improvement because multiple factors in Jellyfish affect the final outcome.
Therefore, it is worth evaluating our proposal in other serving systems where more
controlled experiments can be conducted more conveniently.

Joint DNN training As our preliminary evaluation is focused primarily on the
execution efficiency of the proposed approach, we did not train all the DNN variants
and their early-exit branches. It is important to study the effectiveness of the training
strategy proposed in Sect. 5.2. Such a study will highlight the challenges, complexity
and cost involved in training jointly all the variants. Such a study will also help us in
understanding the accuracy and exit probabilities achieved at each exit branch.

Early-exit decision making As discussed in Sect. 5.3, we evaluated our learning-
based module for exit decision-making exclusively on one DNN variant with two
exit branches, where 30.94% of requests exit at the first exit branch with a minimal
drop in accuracy. It is important to study how well our learning-based module
performs across all DNN variants.

	 Real-Time Systems

1 3

Early-exit APIs Widely used deep learning frameworks like PyTorch and Tensor-
Flow do not provide any APIs for the early-exit implementation and their batched
inference execution. Instead, the current APIs execute all requests through the entire
network and exit them simultaneously. Therefore, it is necessary to explore the API
specifications needed for early-exit networks so that any arbitrary requests can exit
in the middle of the network with low performance overhead.

Accuracy gains through enlargement On one hand, the early-exit technique
offers accelerated execution of batched inference. On the other hand, it allows the
remaining requests in the batch to use more compute resources that could then be
used to enlarge the remaining portion of the DNN variant in an effort to increase
accuracy. Therefore, it is worth investigating the gains in accuracy achieved through
the enlargement of the portion of the DNN.

10 � Related Work

Adaptive video analytics systems Recent works such as VideoStorm (Zhang
et al. 2017), AWStream (Zhang et al. 2018a), Chameleon (Jiang et al. 2018),
DeepDecision (Ran et al. 2018), JCAB (Wang et al. 2020), DDS (Du et al. 2020),
and SPINN (Laskaridis et al. 2020a) have proposed adaptive solutions for networked
video analytics. Their main goal is to schedule bandwidth efficiently or save energy
by means of trading accuracy for resource efficiency. However, meeting latency
SLOs in an end-to-end fashion has not been the main goal or even considered. Data
adaptation is applied in DeepDecision and JCAB, with theoretical frameworks for
adapting input video configurations (such as frame resolution and rate). Although
JCAB considers a multi-client scenario (despite simulation-based evaluation), none
of them consider the multi-client, multi-GPU serving scenario for a holistic DNN
adaptation. The problem of resource allocation and workload partitioning between
multiple clients (smart cameras) and an edge cluster in video surveillance systems
has been addressed by Distream (Zeng et al. 2020). Unlike Jellyfish, however,
Distream does not account for variable edge network conditions and millisecond-
level SLOs, thus limiting its applicability for the highly dynamic scenarios we
consider in this paper.

Inference serving systems Clipper (Crankshaw et al. 2017) provides an easy-to-use
abstraction layer for low-level deep learning frameworks. Nexus (Shen et al. 2019)
aims to optimize serving throughput without SLO violations. Clockwork (Gujarati
et al. 2020) leverages the predictable performance of the DNNs, considers the
SLO guarantees on the server, and maps requests to the desired model, but does
not utilize DNN adaptation. Inferline (Crankshaw et al. 2020), Llama (Romero
et al. 2021b), and FA2 (Razavi et al. 2022) optimize the serving of complex DNN
pipelines. INFaas (Romero et al. 2021a) automates the hardware and model-variant
selection and deployment through managed services. Model-Switching (Zhang
et al. 2020a) proposes to scale DNNs (up and down) instead of scaling resources
in the case of fluctuating workload. None of these cloud-based solutions consider
the impact of the dynamic edge network on the end-to-end latency. These serving
systems do not consider the client conditions and perform client data adaptation to

1 3

Real-Time Systems	

reduce network transmission time and effectively increase the compute time budget
on the server-side. Further, since many of these serving systems are designed for
different objectives (e.g., resource optimization), it is non-trivial to incorporate
network variation, data/DNN adaptation dependencies, and collective adaptation in
them without fundamental changes.

While enterprise-grade serving systems such as TensorFlow Serving (Olston
et al. 2017), Torch Serve (Pytorch 2021), and Triton Inference Server (NVIDIA
2021) support best-effort inference batching, they do not have latency guarantees
as a first-class service feature, let alone considering client network conditions.
Integrating our scheduler logic into these systems is an interesting direction for
future work. Jellyfish bridges the gap between adaptive video analytics systems and
inference serving systems.

Joint adaptation Recent works have also argued for joint data and DNN
adaptation. However, they either focus on a single-client setup (Nigade et al. 2021)
or optimize resources with relatively lenient latency constraints (i.e., 1–5s) (Jiang
et al. 2021). In contrast, Jellyfish maximizes inference accuracy with millisecond-
level latency SLO targets given a highly dynamic network.

Dynamic DNNs Recently, neural architecture search (NAS) based methods
such as ProxylessNAS (Cai et al. 2019), MnasNet (Tan et al. 2019), and OFA (Cai
et al. 2020) have been proposed to generate dynamic (or static) sub-networks
by searching through the large architecture space. These methods complement
our idea of using multiple DNN variants (sub-networks) for DNN adaptation in
inference serving systems, provided they maintain efficient parameter sharing
and architecture switching between the sub-networks. While previous works like
BranchyNet (Teerapittayanon et al. 2016) have focused on improving computational
efficiency in DNNs through early-exit techniques, they are limited to tasks such as
classification (Teerapittayanon et al. 2016; Laskaridis et al. 2020b), segmentation (Li
et al. 2017), or text generation (Schwartz et al. 2020). Our design of the dynamic
DNN extends the early-exit technique to the object detection task by utilizing a
lightweight transformer-based exit branch. Additionally, the performance of batched
inference in the context of early-exit networks has not been extensively studied,
except for a few recent exceptions like DVABatch (Cui et al. 2022), PAME (Zhang
et al. 2022), and Fluid Batching (Kouris et al. 2022). So far, not much work has been
done on combining the network pruning and early-exit techniques. Recently, Görmez
and Koyuncu (2022) evaluated pruning methods for early-exit networks to generate
a smaller yet static early-exit network. To the best of our knowledge, the idea of
combining these two techniques within a serving system to achieve smooth DNN
adaptation with efficient batched inference is novel. Moreover, using transformer-
based vision models opens up the possibility of applying this combination to the
object detection task.

	 Real-Time Systems

1 3

11 � Conclusion

Jellyfish is an edge-centric DL inference serving system that provides soft guarantees
for end-to-end latency SLOs specified over the variable network transmission
and DNN inference time. Jellyfish employs efficient algorithms for client-DNN
mapping and DNN selection, enabling collective system adaptation by aligning data
and DNN adaptation decisions and coordinating adaptation decisions for multiple
clients. Our evaluation based on a system prototype with real inference tasks and
real-world network traces confirms that Jellyfish consistently achieves extremely
low latency SLO violations while maintaining high accuracy. We also present ideas
to design and integrate dynamic DNNs in Jellyfish to accommodate more efficient
DNN switching and batched execution. Our preliminary evaluation demonstrates the
potential of integrating dynamic DNNs to further enhance Jellyfish.

Acknowledgements  We would like to thank the editor and anonymous reviewers for their valuable
comments and suggestions. This work is part of the Efficient Deep Learning (EDL) programme (grant
number P16-25), funded by the Dutch Research Council (NWO), and the Real-Time Video Surveillance
Search project (grant number 18038), also supported by the Dutch Research Council (NWO). We would
also like to thank NVIDIA for the generous donation of two A30 Tensor Core GPUs through their aca-
demic hardware grant program.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aarts EHL, Korst JHM (1990) Simulated annealing and Boltzmann machines—a stochastic approach to
combinatorial optimization and neural computing. Wiley, New Jersey

Ahmad F, Qiu H, Eells R et al (2020) Carmap: fast 3d feature map updates for automobiles. USENIX
NSDI, Santa Clara, pp 1063–1081

Ali AJB, Hashemifar ZS, Dantu K (2020) Edge-slam: edge-assisted visual simultaneous localization and
mapping. ACM MobiSys, New York, pp 325–337

Ananthanarayanan G, Bahl P, Bodík P et al (2017) Real-time video analytics: the killer app for edge com-
puting. Computer 50:58–67

Bhardwaj R, Xia Z, Ananthanarayanan G et al (2022) Ekya: continuous learning of video analytics mod-
els on edge compute servers. USENIX NSDI, Santa Clara, pp 119–135

Bochkovskiy A, Wang C, Liao HM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv
arXiv:​2004.​10934

Braun M, Mainz A, Chadowitz R et al (2019) At your service: designing voice assistant personalities to
improve automotive user interfaces. ACM CHI, Boston, p 40

Cai H, Zhu L, Han S (2019) Proxylessnas: direct neural architecture search on target task and hardware.
ICLR, Vienna

Cai H, Gan C, Wang T et al (2020) Once-for-All: train one network and specialize it for efficient deploy-
ment. ICLR, Vienna

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.10934

1 3

Real-Time Systems	

Carion N, Massa F, Synnaeve G et al (2020) End-to-end object detection with transformers. ECCV, Glas-
gow, pp 213–229

Chen Z, Hu W, Wang J et al (2017) An empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance. ACM/IEEE SEC, Wilmington, p 14:1-14:14

Cheng Y, Wang D, Zhou P et al (2018) Model compression and acceleration for deep neural networks:
the principles, progress, and challenges. IEEE Signal Process Mag 35:126–136

Crankshaw D, Wang X, Zhou G et al (2017) Clipper: a low-latency online prediction serving system.
USENIX NSDI, Santa Clara, pp 613–627

Crankshaw D, Sela G, Mo X et al (2020) InferLine: latency-aware provisioning and scaling for prediction
serving pipelines. ACM SoCC, Seattle, pp 477–491

Cui W, Zhao H, Chen Q et al (2022) DVABatch: diversity-aware multi-entry multi-exit batching for effi-
cient processing of DNN services on gpus. USENIX ATC, Boston, pp 183–198

Dai D, Wang Y, Chen Y et al (2016) Is image super-resolution helpful for other vision tasks? IEEE
WACV, Snowmass, pp 1–9

Du K, Pervaiz A, Yuan X et al (2020) Server-driven video streaming for deep learning inference. ACM
SIGCOMM, New York, pp 557–570

Görmez A, Koyuncu E (2022) Pruning early exit networks. CoRR arXiv:​2207.​03644
Gujarati A, Karimi R, Alzayat S et al (2020) Serving dnns like clockwork: performance predictability

from the bottom up. USENIX OSDI, Berkeley, pp 443–462
Han S, Shen H, Philipose M et al (2016) MCDNN: an approximation-based execution framework for

deep stream processing under resource constraints. ACM MobiSys, New York, pp 123–136
Han Y, Huang G, Song S et al (2022) Dynamic neural networks: a survey. IEEE Trans Pattern Anal Mach

Intell 44:7436–7456
He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. IEEE CVPR, Seattle,

pp 770–778
Heo S, Cho S, Kim Y et al (2020) Real-time object detection system with multi-path neural networks.

IEEE RTAS, San Antonio, pp 174–187
Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. CoRR arXiv:​1503.​

02531
Huang J, Qian F, Gerber A et al (2012) A close examination of performance and power characteristics of

4g LTE networks. ACM MobiSys, New York, pp 225–238
Jiang J, Ananthanarayanan G, Bodík P et al (2018) Chameleon: scalable adaptation of video analytics.

ACM SIGCOMM, New York, pp 253–266
Jiang J, Luo Z, Hu C et al (2021) Joint model and data adaptation for cloud inference serving. IEEE

RTSS, Houston, pp 279–289
Kannan T, Hoffmann H (2021) Budget rnns: multi-capacity neural networks to improve in-sensor infer-

ence under energy budgets. IEEE RTAS, San Antonio, pp 143–156
Kannan RS, Subramanian L, Raju A et al (2019) GrandSLAm: guaranteeing slas for jobs in microser-

vices execution frameworks. ACM EuroSys, New York, p 34:1-34:16
Kouris A, Venieris SI, Laskaridis S, et al (2022) Fluid batching: Exit-aware preemptive serving of early-

exit neural networks on edge npus. CoRR arXiv:​2209.​13443
Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of features from tiny images. CoRR
Laskaridis S, Venieris SI, Almeida M et al (2020) SPINN: synergistic progressive inference of neural

networks over device and cloud. ACM MobiCom, Los Cabos, p 37:1-37:15
Laskaridis S, Venieris SI, Kim H et al (2020) HAPI: hardware-aware progressive inference. IEEE/ACM

ICCAD, NewYork, pp 1–9
Laskaridis S, Kouris A, Lane ND (2021) Adaptive inference through early-exit networks: design, chal-

lenges and directions. ACM EMDLMobiSys, New York, pp 1–6
Lee S, Nirjon S (2020) SubFlow: a dynamic induced-subgraph strategy toward real-time DNN inference

and training. IEEE RTAS, San Antonio, pp 15–29
Li X, Liu Z, Luo P et al (2017) Not all pixels are equal: difficulty-aware semantic segmentation via deep

layer cascade. IEEE CVPR, Seattle, pp 3193–3202
Lin T, Maire M, Belongie SJ et al (2014) Microsoft COCO: common objects in context. ECCV, Zurich,

pp 740–755
Liu L, Li H, Gruteser M (2019) Edge assisted real-time object detection for mobile augmented reality.

ACM MobiCom, Los Cabos, p 25:1-25:16
Matsubara Y, Levorato M, Restuccia F (2023) Split computing and early exiting for deep learning appli-

cations: survey and research challenges. ACM Comput Surv 55:1–30

http://arxiv.org/abs/2207.03644
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2209.13443

	 Real-Time Systems

1 3

Nigade V, Winder R, Bal HE et al (2021) Better never than late: timely edge video analytics over the air.
ACM SenSys, New York, pp 426–432

Nigade V, Bauszat P, Bal H et al (2022) Jellyfish: timely inference serving for dynamic edge networks.
IEEE RTSS, Houston, pp 277–290

NVIDIA (2021) NVIDIA Triton Inference Server. https://​devel​oper.​nvidia.​com/​nvidia-​triton-​infer​
ence-​server

Olston C, Fiedel N, Gorovoy K, et al (2017) Tensorflow-serving: flexible, high-performance ML serving.
arXiv arXiv:​1712.​06139

Pytorch (2021) TorchServe. https://​pytor​ch.​org/​serve/
PyTorch (2022) Reproducibility. https://​pytor​ch.​org/​docs/​stable/​notes/​rando​mness.​html
Qu Z, Sarwar SS, Dong X, et al (2022) DRESS: dynamic real-time sparse subnets. CoRR arXiv:​2207.​

00670
Ran X, Chen H, Zhu X et al (2018) DeepDecision: a mobile deep learning framework for edge video ana-

lytics. IEEE INFOCOM, New Jersey, pp 1421–1429
Razavi K, Luthra M, Koldehofe B et al (2022) FA2: fast, accurate autoscaling for serving deep learning

inference with SLA guarantees. IEEE RTAS, San Antonio, pp 146–159
Ren S, He K, Girshick RB et al (2017) Faster R-CNN: towards real-time object detection with region

proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, New
Jersey, pp 1137–1149

Romero F, Li Q, Yadwadkar NJ et al (2021) INFaaS: automated model-less inference serving. USENIX
ATC, Boston, pp 397–411

Romero F, Zhao M, Yadwadkar NJ, et al (2021b) Llama: A heterogeneous & serverless framework for
auto-tuning video analytics pipelines. arXiv arXiv:​2102.​01887

Rusci M, Capotondi A, Benini L (2020) Memory-driven mixed low precision quantization for enabling
deep network inference on microcontrollers. MLSys, Austin, pp 326–335

Samplawski C, Marlin BM (2021) Towards transformer-based real-time object detection at the edge: a
benchmarking study. IEEE MILCOM, Boston, pp 898–903

Schwartz R, Stanovsky G, Swayamdipta S et al (2020) The right tool for the job: matching model and
instance complexities. ACL, Dublin, pp 6640–6651

Shen H, Chen L, Jin Y et al (2019) Nexus: a GPU cluster engine for accelerating DNN-based video
analysis. ACM SOSP, New York, pp 322–337

Sreedhar K, Clemons J, Venkatesan R, et al (2022) Enabling and accelerating dynamic vision transformer
inference for real-time applications. CoRR arXiv:​2212.​02687

Svoboda F, Fernández-Marqués J, Liberis E et al (2022) Deep learning on microcontrollers: a study on
deployment costs and challenges. In: Yoneki E, Nardi L (eds) EuroSys’22. ACM EuroMLSys, New
York, pp 54–63

Szegedy C, Ioffe S, Vanhoucke V et al (2017) Inception-v4, inception-ResNet and the impact of residual
connections on learning. AAAI, Washington, pp 4278–4284

Tan M, Chen B, Pang R et al (2019) Mnasnet: platform-aware neural architecture search for mobile. IEEE
CVPR, Long Beach, pp 2820–2828

Teerapittayanon S, McDanel B, Kung HT (2016) Branchynet: fast inference via early exiting from deep
neural networks. ICPR, New York, pp 2464–2469

Tianxiaomo (2020) Pytorch-yolov4. https://​github.​com/​Tianx​iaomo/​pytor​ch-​YOLOv4
van der Hooft J, Petrangeli S, Wauters T et al (2016) Http/2-based adaptive streaming of HEVC video

over 4g/lte networks. IEEE Commun Lett 20:2177–2180
Wan C, Santriaji MH, Rogers E et al (2020) ALERT: accurate learning for energy and timeliness. USE-

NIX ATC, Boston, pp 353–369
Wang E, Davis JJ, Zhao R et al (2019) Deep neural network approximation for custom hardware: where

we’ve been, where we’re going. ACM Comput Surv 52:40:1-40:39
Wang C, Zhang S, Chen Y et al (2020) Joint configuration adaptation and bandwidth allocation for edge-

based real-time video analytics. IEEE INFOCOM, New York, pp 257–266
Xu D, Zhou A, Zhang X et al (2020) Understanding operational 5G: a first measurement study on its cov-

erage, performance and energy consumption. ACM SIGCOMM, New York, pp 479–494
Yin X, Jindal A, Sekar V et al (2015) A control-theoretic approach for dynamic adaptive video streaming

over HTTP. ACM SIGCOMM, New York, pp 325–338

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
http://arxiv.org/abs/1712.06139
https://pytorch.org/serve/
https://pytorch.org/docs/stable/notes/randomness.html
http://arxiv.org/abs/2207.00670
http://arxiv.org/abs/2207.00670
http://arxiv.org/abs/2102.01887
http://arxiv.org/abs/2212.02687
https://github.com/Tianxiaomo/pytorch-YOLOv4

1 3

Real-Time Systems	

Yu F, Wang D, Shangguan L, et al (2022) A survey of multi-tenant deep learning inference on GPU.
arXiv:​2203.​09040

Zeng X, Fang B, Shen H et al (2020) Distream: scaling live video analytics with workload-adaptive dis-
tributed edge intelligence. ACM SenSys, New York, pp 409–421

Zhang H, Ananthanarayanan G, Bodík P et al (2017) Live video analytics at scale with approximation
and delay-tolerance. USENIX NSDI, Berkeley, pp 377–392

Zhang B, Jin X, Ratnasamy S et al (2018) AWStream: adaptive wide-area streaming analytics. ACM SIG-
COMM, New York, pp 236–252

Zhang T, Ye S, Zhang K et al (2018) A systematic DNN weight pruning framework using alternating direc-
tion method of multipliers. ECCV, Munich, pp 191–207

Zhang J, Elnikety S, Zarar S et al (2020) Model-switching: dealing with fluctuating workloads in machine-
learning-as-a-service systems. USENIX HotCloud, Berkeley

Zhang X, Lu H, Hao C et al (2020) SkyNet: a hardware-efficient method for object detection and tracking on
embedded systems. MLSys, Austin, pp 216–229

Zhang S, Cui W, Chen Q et al (2022) PAME: precision-aware multi-exit DNN serving for reducing latencies
of batched inferences. ACM ICS, New York, pp 1–12

Zhou Y, Moosavi-Dezfooli S, Cheung N et al (2018) Adaptive quantization for deep neural network. AAAI,
Washington, pp 4596–4604

Zhu X, Su W, Lu L et al (2021) Deformable DETR: deformable transformers for end-to-end object detection.
ICLR, Vienna

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Vinod Nigade  is a postdoctoral researcher in the High Performance
Distributed Computing group at Vrije Universiteit Amsterdam. His
research spans various facets of computer systems, such as net-
worked systems, machine learning systems, video analytics systems,
and distributed systems of intermittent [battery-less] devices. He
holds a PhD and MSc from Vrije Universiteit Amsterdam and
received an Outstanding Paper Award at IEEE RTSS 2022. Vinod
also has four years of industrial experience in computer systems, pre-
dominantly in distributed and data storage systems.

Pablo Bauszat  received the Ph.D. degree in computer science from
TU Braunschweig, Germany in 2015. He was a Post-Doctoral
Researcher at the Computer Graphics and Visualization Group, Delft
University of Technology, The Netherlands, and a Software Engineer
at Google Research Zurich, Switzerland. Currently, he is a Scientific
Programmer in the High Performance Distributed Computing Group
at the Vrije Universiteit Amsterdam, The Netherlands. He published
in a variety of research domains including computer graphics and
visualization, computer vision, machine learning, and networking.

http://arxiv.org/abs/2203.09040

	 Real-Time Systems

1 3

Henri Bal  is a full professor of Computer Science at the Vrije Uni-
versiteit, where he leads the High Performance Distributed Comput-
ing group. He is a member of the Academia Europeana and winner
of the Euro-Par 2014 Achievement Award. He has been Program
Chair of CCGrid and HPDC and PC member of numerous
conferences.

Lin Wang  is currently a Full Professor and Head of the Chair of
Computer Networks in the Department of Computer Science at Pad-
erborn Univesity. He received his Ph.D. degree from the Institute of
Computing Technology, Chinese Academy of Sciences in 2015. Pre-
viously, he held positions at Vrije Universiteit Amsterdam, TU
Darmstadt, SnT Luxembourg, and IMDEA Networks Institute. He is
broadly interested in networked systems, with a focus on in-network
computing and intermittently-powered IoT systems. He has received
a Google Research Scholar Award, an Outstanding Paper Award of
RTSS 2022, a Best Paper Award of IPCCC 2023, and an Athene
Young Investigator Award of TU Darmstadt. He is a Senior Member
of IEEE.

	Inference serving with end-to-end latency SLOs over dynamic edge networks
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 DL inference serving
	2.2 Adaptation techniques for inference serving systems
	2.3 Limitations of existing approaches
	2.4 Techniques for generating DNN variants
	2.4.1 Static DNNs
	2.4.2 Dynamic DNNs

	3 Jellyfish design
	3.1 Overview
	3.2 System components
	3.3 Online latency budget estimation

	4 Scheduling algorithms
	4.1 Problem formulation
	4.2 Client-DNN mapping
	4.3 DNN selection
	4.4 DNN update

	5 Design sketch for dynamic DNNs
	5.1 Dynamic DNN creation for object detection
	5.2 DNN training
	5.3 Early-exit decision making
	5.4 Dynamic DNN summary

	6 Implementation
	7 Performance evaluation
	7.1 Methodology
	7.2 End-to-end performance
	7.3 Comparison with the baselines
	7.4 Performance of joint adaptation
	7.5 Large-scale setup
	7.6 Scheduler performance
	7.7 DNN prefetching performance

	8 Preliminary evaluation with dynamic DNNs
	8.1 Evaluation setups
	8.2 Impact on DNN adaptation
	8.3 Early-exit performance

	9 Further discussion and limitations
	9.1 Jellyfish
	9.2 Dynamic DNNs

	10 Related Work
	11 Conclusion
	Acknowledgements
	References

