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Abstract
While high accuracy is of paramount importance for deep learning (DL) inference, 
serving inference requests on time is equally critical but has not been carefully 
studied especially when the request has to be served over a dynamic wireless 
network at the edge. In this paper, we propose Jellyfish—a novel edge DL 
inference serving system that achieves soft guarantees for end-to-end inference 
latency service-level objectives (SLO). Jellyfish handles the network variability by 
utilizing both data and deep neural network (DNN) adaptation to conduct tradeoffs 
between accuracy and latency. Jellyfish features a new design that enables collective 
adaptation policies where the decisions for data and DNN adaptations are aligned 
and coordinated among multiple users with varying network conditions. We propose 
efficient algorithms to continuously map users and adapt DNNs at runtime, so 
that we fulfill latency SLOs while maximizing the overall inference accuracy. We 
further investigate dynamic DNNs, i.e., DNNs that encompass multiple architecture 
variants, and demonstrate their potential benefit through preliminary experiments. 
Our experiments based on a prototype implementation and real-world WiFi and 
LTE network traces show that Jellyfish can meet latency SLOs at around the 99th 
percentile while maintaining high accuracy.

Keywords  Inference serving · DNN adaptation · Data adaptation · Dynamic edge 
networks · Dynamic DNNs

1  Introduction

In the past decade, modern applications such as augmented reality, intelligent 
personal assistants, and autonomous driving (Liu et al. 2019; Braun et al. 2019; Ali 
et al. 2020; Ahmad et al. 2020) have proliferated. A considerable number of these 
applications are based on deep learning (DL) inference, e.g., analyzing continuous 
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video streams to understand the environment with pretrained deep neural networks 
(DNNs)  (Ananthanarayanan et  al. 2017). Employing sophisticated learning 
techniques (He et al. 2016; Bochkovskiy et al. 2020), these DNNs typically demand 
intensive computations, making them hard to deploy on mobile and IoT devices 
due to the limited capability of these devices. Ongoing research efforts enable the 
deployment of large DNNs on end devices with limited capabilities through model 
compression (e.g., using quantization (Zhou et al. 2018), model pruning (Zhang et al. 
2018b), or knowledge distillation  (Hinton et  al. 2015)). Despite recent advances, 
compressed DNNs still experience significant accuracy loss and require meticulous 
tweaks  (Cheng et al. 2018; Wang et al. 2019). In addition, the compressed DNNs 
are challenging to fit on end devices such as micro-controllers with only a few 
kilobytes of memory and low-power consumption, severely limiting the working 
set size for storing DNN parameters and inference latency  (Svoboda et  al. 2022). 
Therefore, DL inference for mobile and IoT applications is often offloaded to a more 
powerful nearby computing platform such as edge servers equipped with high-end 
accelerators like GPUs or TPUs (Bhardwaj et al. 2022).

Handling DL inference requests is generally referred to as inference serving, 
where requests are scheduled to computing resources (e.g., GPUs). Then, the 
corresponding DNN is loaded on the computing resources to execute the request, 
taking the data associated with the request as input. DL inference serving has 
been extensively studied recently with frameworks including Clipper  (Crankshaw 
et  al. 2017), Nexus  (Shen et  al. 2019), Clockwork  (Gujarati et  al. 2020), and 
INFaas  (Romero et  al. 2021a). The general goal is to achieve resource efficiency 
and/or guarantee inference latency (e.g., serving requests within 100ms  (Gujarati 
et al. 2020)), as typically specified in the service-level objective (SLO) of modern 
applications.

Despite the enormous efforts, virtually all existing DL inference serving systems 
focus on the server part, leaving out the network part when specifying the SLO. 
However, inference requests with input data generated by mobile or IoT devices 
need to travel through a (wireless) network before they arrive at the edge server. 
Such a network typically shows high performance variability (Huang et al. 2012; Xu 
et al. 2020), causing variable delays in network transmission for inference requests. 
Hence, SLOs for mobile and IoT applications should be specified end-to-end, cover-
ing both the network and compute parts. Being agnostic to the network time, edge 
DL inference serving systems risk ending up with insufficient time to process the 
request (e.g., under poor network conditions), leading to SLO violations. Therefore, 
considering network time and end-to-end SLOs poses new challenges and calls for 
new designs for timely edge DL inference serving for mobile and IoT applications.

In this paper, we propose Jellyfish—a novel framework for timely inference 
serving at the edge, aiming to guarantee the end-to-end SLO while achieving 
high inference accuracy. Jellyfish relies on two adaptation strategies to achieve 
tradeoff between accuracy and latency: data adaptation to adjust the input data 
size and DNN adaptation to switch between DNNs. Jellyfish features a new design 
that enables collective adaptation policies. More specifically, Jellyfish aligns the 
data and DNN adaptation decisions for each client and coordinates the adaptation 
decisions among multiple clients by provisioning a zoo (collection) of DNNs with 
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different latency-accuracy tradeoff profiles to serve the requests from these clients 
collectively. One major benefit of such a design is the potential of leveraging request 
batching—a known technique for improving resource efficiency in DL inference 
serving  (Crankshaw et  al. 2017; Shen et  al. 2019). The higher resource efficiency 
in Jellyfish translates into more room for inference accuracy improvements under 
latency constraints, but at the cost of more complex scheduling decision-making that 
involves multiple steps, as depicted in Fig. 1.

Jellyfish addresses the scheduling challenges with a set of efficient algorithms. 
Particularly, given a collective DNN adaptation decision (i.e., a selected set of DNN 
instances1), Jellyfish first solves the client-DNN mapping problem by applying 
dynamic programming. The client-DNN mapping algorithm also leverages batching 
to the maximum and outputs the corresponding request batching decision for each 
DNN instance. Upon system status changes, Jellyfish employs a separate procedure 
to adapt (select) DNNs incrementally based on simulated annealing (Aarts and Korst 
1990). Finally, Jellyfish keeps informing each client about the input size of the DNN 
to which they are mapped, so that the client performs data adaptation by sending 
inference requests with that particular data size.

Jellyfish requires a zoo (collection) of DNN variants with different accuracy-
latency tradeoff profiles to perform DNN adaptation. Commonly, a zoo of 
DNNs is generated using a collection of static DNN models that have a fixed 
computational graph and parameters during inference (often referred to as 
the bag-of-models approach). Alternatively, we can employ a single dynamic 
DNN that has a dynamic computational graph that enables partial execution 
and virtually embeds multiple DNN variants in one base DNN. Each of these 
strategies has its advantages and disadvantages. We can easily construct static 
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Fig. 1   Collective DNN adaptation for timely edge DL inference serving

1  The DNN instance represents one instance of a particular DNN variant selected by the Jellyfish sched-
uler from the zoo of DNNs to deploy it on one GPU for inference.
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DNN variants by downloading different pretrained models or by training different 
architectures separately with standard methodologies. However, the static 
approach introduces DNN adaptation overhead during runtime (further explained 
in Sect.  2.4). In contrast, dynamic DNNs incur negligible adaptation overhead 
and enable on-the-fly adaptation. However, designing and training dynamic 
DNNs is challenging, especially for real-world vision tasks like object detection. 
In this paper, we propose a greedy instance prefetching strategy to reduce DNN 
adaptation overhead when using static DNNs. We further explore dynamic DNNs 
as an alternative to the bag-of-models approach for inference serving.

In developing Jellyfish, we make the following contributions: 

1.	 We present Jellyfish, a new DL inference serving system for dynamic edge 
networks based on the idea of collective DNN adaptation, aiming to achieve soft 
SLO guarantees.

2.	 We formulate the collective DNN adaptation problem considering the latency 
constraints, and propose efficient algorithms for dynamic client-DNN mapping, 
request batching, and DNN selection.

3.	 We design and implement a prototype for Jellyfish and demonstrate its 
effectiveness by conducting extensive experiments for popular video analytics 
inference tasks with real-world network traces. Our results show that Jellyfish can 
meet the SLO of inference requests around 99% of the time while maintaining 
high accuracy.

4.	 We present ideas for optimizing the DNN execution to avoid DNN switching 
(adaptation) costs on GPUs and enable highly efficient execution for batched 
inferences by leveraging dynamic DNNs. Furthermore, we integrate dynamic 
DNNs in Jellyfish and conduct preliminary experiments to demonstrate the 
effectiveness of dynamic DNNs in inference serving systems.

Paper structure The rest of the paper is structured as follows: Sect. 2 introduces 
the background and motivates our work. Section  3 presents the overall system 
design. Section  4 describes the formulation of the collective DNN adaptation 
problem and our proposed scheduling algorithms. Section  5 presents a design 
sketch for leveraging dynamic DNNs to efficiently switch between DNNs and 
perform batched inferences. Section  6 discusses our implementation in detail. 
Section  7 contains the evaluation of Jellyfish and a discussion of the results. 
Section  8 presents the preliminary evaluation of leveraging dynamic DNNs in 
Jellyfish. Section  9 discusses limitations and future work. Section  10 describes 
related work. Section 11 provides a final conclusion.

Extended version This paper significantly extends our prior conference paper, 
“Jellyfish: Timely Inference Serving for Dynamic Edge Networks”, published at 
the 43rd IEEE Real-Time Systems Symposium (RTSS) (Nigade et al. 2022). This 
paper includes the following key additions:

•	 A new Sect.  2.4, explaining techniques for generating DNN variants and 
highlighting their advantages and disadvantages for DNN inference serving.
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•	 System details for online latency budget estimation in Sect. 3.3.
•	 Addition of a new table that lists all the notations used in the paper (Table 1).
•	 A new part in Sect.  4.3 that describes parameter selection policies for the 

simulated annealing algorithm.
•	 A new Sect.  5 that presents our design sketch for leveraging dynamic DNNs 

to optimize DNN adaptation overhead and batched inference execution using 
techniques like network pruning and early-exit.

•	 Inclusion of implementation details concerning client-side decisions and 
overhead in Sect. 6.

•	 Detailed elaboration of anomalies and new observations found in end-to-end 
performance analysis (see Sect. 7.2).

•	 Addition of new experimental results (Table  2) comparing Jellyfish with a 
baseline under cases with heterogeneous clients.

•	 A new Sect.  8 that presents the preliminary evaluation of dynamic DNNs in 
Jellyfish, including the impact on DNN adaptation and the performance of the 
early-exit technique.

•	 Discussion and limitations in Sect.  9.1 for supporting accuracy constraints, 
providing clients-side adapters, and handling unreliable communication 
networks.

•	 A new Sect.  9.2 that discusses future work and the limitations of leveraging 
dynamic DNNs.

•	 Inclusion of related work on dynamic DNNs for a comprehensive overview.

These additions contribute to a more thorough and detailed analysis of the Jellyfish 
framework to further improve its overall performance.

2 � Background and motivation

2.1 � DL inference serving

Today, DL-based mobile and IoT applications like augmented reality and intelligent 
personal assistants rely on deep neural networks (DNNs) to complete inference tasks 
like object detection and speech recognition  (Liu et al. 2019; Ali et al. 2020; Ahmad 
et al. 2020). A DNN consists of multiple layers. To achieve high accuracy, DNNs 
employ an increasing number of layers (He et al. 2016; Szegedy et al. 2017), leading 
to unprecedented computing demands for DNN execution. However, mobile and 
IoT devices are typically resource-constrained, incapable of completing DL-based 
inference on time with state-of-the-art DNNs. Furthermore, battery life is usually a 
big concern for these devices. Hence, DL inference tasks are often offloaded to more 
powerful computing platforms such as edge servers equipped with high-end GPUs 
and TPUs (Liu et al. 2019; Ali et al. 2020).

DL inference serving on servers has been extensively studied 
recently   (Crankshaw et  al. 2017; Shen et  al. 2019; Gujarati et  al. 2020; Romero 
et  al. 2021a). Applications based on DL inference typically require some form of 
latency guarantee, often specified as a service-level objective (SLO), to ensure the 
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usefulness of the inference result. For example, digital assistance like Amazon Alexa 
dictates that the tail latency is constrained within 200–300ms  (Chen et  al. 2017). 
Current inference serving frameworks like Nexus and Clockwork focus mainly on 
meeting SLOs via inference request scheduling, leveraging the high predictability of 
DNN execution time. However, most of these frameworks assume that a fixed SLO 
is specified for the DNN execution part and optimize only the inference serving time 
towards this SLO.

We argue that this is insufficient for inference serving at the edge for mobile and 
IoT applications. Typically, inference requests with input data (e.g., an image) issued 
by mobile or IoT devices travel through a dynamic (wireless) network (e.g., WiFi or 
cellular) before they reach the edge server. As a result, the time left for computing 
(i.e., inference serving) on the server can experience significant variations due to 
the variable network time caused by the variable network performance (see Fig. 2). 
Consequently, the application SLO should be defined end-to-end, including both the 
network and compute time. Ideally, edge DL inference serving for mobile and IoT 
applications should consider jointly the network and compute parts in the pipeline 
and be adaptive to network dynamics.

2.2 � Adaptation techniques for inference serving systems

DNN adaptation The idea of DNN adaptation is to choose between functionally-
equivalent DNNs with different latency-accuracy tradeoff profiles. Generally, this 
can be achieved by two approaches: (1) DNN switching relies on a set of DNNs 
optimized with different depths, widths, or numerical precision offline (Zhang et al. 
2020b; Rusci et al. 2020). The idea has been applied in several DL inference serv-
ing systems, such as ALERT (Wan et al. 2020), where the DNN is switched con-
tinuously at runtime to meet latency, accuracy, and energy constraints. (2) Dynamic 
DNNs enable the partial execution of the DNN (e.g., a sub-network or early-exit) at 
runtime depending on the changing input data content or resource availability (Lee 
and Nirjon 2020; Kannan and Hoffmann 2021). Overall, DNN adaptation techniques 

Fig. 2   Network time for sending JPEG images with adaptive resolutions over an LTE network (band-
width shown in Fig. 14)
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are agnostic to the variable network time, making them, when applied alone, ineffec-
tive for end-to-end latency SLO guarantees over a dynamic edge network.

Data adaptation When the input data for the DNN has to be transferred over 
a dynamic network  (Zhang et  al. 2018a; Ran et  al. 2018), data adaptation (e.g., 
changing the image resolution) can be used to reduce the input data size to avoid 
network bottlenecks (w.r.t. throughput), at the cost of reduced inference accuracy. To 
illustrate the power of data adaptation, we perform an experiment where we stream 
JPEG images over a dynamic LTE network and adapt the image resolution to ensure 
a stable throughput. Figure 2 shows that data adaptation can help to smooth out the 
big spikes in the network time for each image, but still, significant variability can be 
observed. This shows that data adaptation, while beneficial, is not enough on its own 
to deal with tight end-to-end latency SLO requirements.

2.3 � Limitations of existing approaches

We identify the following two major limitations of existing approaches when used 
for inference serving with end-to-end latency SLOs under highly dynamic edge 
networks.

Misaligned adaptation decisions Existing works mostly focus on either data or 
DNN adaptation (Zhang et al. 2018a; Ran et al. 2018; Wan et al. 2020; Lee and Nir-
jon 2020). When simply combined, they could produce misaligned adaptation deci-
sions, leading to suboptimal performance. For example, when the network condition 
is good, input data adaptation may choose a high resolution for the image data that 
is sent over the network. However, if the DNN running on the server expects a much 
lower resolution for its input due to a low compute time budget, the received image 
has to be downscaled before being served. This leads to resource waste in terms of 
both network time and bandwidth. To quantify this effect, Fig. 3 shows the extra net-
work transmission time due to misaligned adaptation decisions, where up to 150ms 
of extra time is unnecessarily consumed simply for network transmission when the 
chosen input data size is larger than the input size of the chosen DNN. Conversely, if 
the chosen data size is smaller than the input size of the chosen DNN, the data has to 
be upscaled when reaching the server, which potentially affects the DNN accuracy 

Fig. 3   The extra network time spent when a client sends JPEG images at a resolution larger than the 
input size of the DNN on the server under varying bandwidth conditions (covering the bandwidth range 
of a real-world LTE network). The resolution gap is defined as the chosen client-sending resolution 
minus the resolution expected by the DNN on the server
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adversely (Dai et al. 2016). To ensure the end-to-end latency SLO, the decisions for 
the two adaptation strategies need to be aligned.

Uncoordinated adaptations for multiple clients Many existing works on adaptive 
inference focus on a single-client setup where the adaptation is applied to a single 
inference pipeline (Zhang et al. 2018a; Ran et al. 2018; Du et al. 2020; Nigade et al. 
2021). Although such a setup could be simply replicated across multiple clients, we 
argue that such a design would lead to poor resource efficiency, which is detrimental 
to the resource-limited edge environment. Without coordination among the 
adaptation for different clients, the server would need to instantiate a large number 
of DNN instances, each for a client and possibly in a different size. Further, batching 
of inference requests from multiple clients would be prohibited, leading to poor 
resource efficiency especially when the inference request rate for each client is low. 
To avoid these issues, the adaptations for multiple clients need to be coordinated 
holistically.

None of the existing works are able to overcome these limitations 
simultaneously  (Nigade et  al. 2021; Jiang et  al. 2021). We argue that a collective 
adaptation approach that holistically aligns and coordinates DNN and data 
adaptation decisions for multiple clients is required to address the aforementioned 
challenges.

2.4 � Techniques for generating DNN variants

Inference serving systems typically deploy functionally-equivalent DNN variants 
and switch between them at runtime to trade accuracy off for execution latency. In 
the following, we will discuss techniques for generating DNN zoos using static and 
dynamic DNNs and highlight their advantages and disadvantages for DNN inference 
serving. Note that Jellyfish and its scheduling algorithms are generally applicable 
regardless of the techniques used for generating DNN variants.

2.4.1 � Static DNNs

Static DNNs have a fixed computational graph and set of parameters. They follow 
the same computational path to process each input and get the prediction output. 
Many serving systems  (Wan et  al. 2020; Romero et  al. 2021a) use a set of static 
DNN models with different latency-accuracy tradeoff profiles, also known as the 
bag-of-models technique. One benefit of this technique is that we can easily generate 
a set (bag) of DNN variants by downloading off-the-self pretrained DNNs from the 
publicly available model hosting hubs. These DNN variants can have different archi-
tectures (e.g., varying numbers of layers and filters) and are trained separately. This 
technique, therefore, leads to different parameters for every DNN variant. Before a 
DNN variant can be used for inference, it needs to be loaded into the GPU memory. 
Depending on the parameter size of DNNs, the number of DNNs in the set, and the 
memory capacity of the GPU, not all DNN variants may fit on the GPU at once. 
As a result, the DNN variants need to be continuously swapped in and out of the 
GPUs following the adaptation decisions made by the inference serving scheduler. 
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The DNN switching cost in terms of time can be quite high (hundreds of millisec-
onds) and may lead to a significant delay in DNN adaptation. Such a delay can fur-
ther result in a mismatch between the input data size and the expected DNN variant, 
which ultimately leads to latency SLO violations and reduced accuracy.

Figure 4 shows the switching cost of different DNN variants (whose parameter 
sizes range in [132.66, 215.94]  MB) when swapped in and out of the GPU 
without considering the interference (due to contention on the PCIe) from the 
parallel inference workload. We generate the static DNN variants and the dynamic 
DNN using the OFA-ResNet50  (Cai et  al. 2020) and DETR  (Carion et  al. 2020) 
models (explained in Sect.  8.1). We observe an increasing trend, albeit weak, in 
the switching cost as DNN size increases, particularly for CPU-to-GPU transfer. 
The difference (variance) in switching costs across the different DNN variants 
remains minimal. This is because our current hardware setup uses a PCIe 3.0 x16 
link to the NVIDIA RTX2080Ti, which offers a high theoretical bandwidth of 
approximately 16GB/s. Hence, for a narrow range of relatively small parameter sizes 
[132.66, 215.94] MB, the data transfer time does not exhibit significant variation. 
Nevertheless, even in this ideal scenario with minimal interference, the switching 
cost is considerable.

Jellyfish employs a DNN prefetching (caching) technique to alleviate the 
switching cost issue (see Sect.  4.4). The idea is to keep prefetching a few extra 
DNN variants neighboring (in size) to the currently active DNN variant in the hope 
that the scheduler will select the next active DNN variant from the neighbors of 
the current ones that are cached on the GPU. However, prefetching techniques can 
struggle in highly dynamic environments where adaptation decisions are mostly 
irregular. In addition, even when the DNN variant cache hit ratio is high, we must 
continuously swap in and out the DNN variants that are neighbors to the active 
DNN variant to keep the DNN cache active on the GPU, which inevitably interferes 
with the ongoing inference process due to contention on the data transfer link (such 
as PCIe).

Fig. 4   The DNN switching cost from CPU-to-GPU (swapped in) and GPU-to-CPU (swapped out) for 16 
static DNN variants (their parameter sizes range in [132.66, 215.94] MB) compared to the dynamic DNN 
when measured in isolation without any interference (due to contention on the PCIe) bus from parallel 
inference workloads on an NVIDIA RTX2080Ti GPU. Dynamic DNN incurs almost negligible (0.17 ms) 
switching costs. The x-axis denotes the input size of DNN variants — the smaller the DNN input size, 
the lower the latency and accuracy
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To avoid the switching cost altogether, we study whether it is possible to embed 
all DNN variants as sub-networks in one big base DNN network (sharing a common 
parameter set) and enable the switching between sub-networks dynamically 
on-the-fly.

2.4.2 � Dynamic DNNs

To overcome the limitations of the bag-of-models technique, we investigate the fam-
ily of DNN architecture called dynamic DNNs. Recently, many works have proposed 
to enable the dynamic (partial) execution of DNN models during runtime to improve 
computational efficiency without incurring a significant loss in accuracy (Han et al. 
2022). One of the primary methods for dynamic DNN execution is through online 
network pruning, as depicted in Fig. 5a. In online network pruning, a less important 
(or redundant) portion of the DNN network is pruned or skipped during the execu-
tion, expecting it to improve computational efficiency. For example, we can prune 
less important activations (neurons) from the layer’s output or we can prune weights, 
channels in the filter, or the whole filter itself from the parameter set. The decision 
to prune and select a sub-network for the dynamic execution mostly depends on the 
changing content of the input. Although this approach aims to maintain the same 
accuracy for sub-networks compared to the bigger base DNN, it cannot guarantee 

i. DNN variant with  
pruning ratio 0.0

ii. DNN variant with  
pruning ratio 0.6

Active neurons Pruned neurons

(a) DNN variants with a
neuron pruning method

Stage 2Stage 1
Input

Early-exit  
branch 1

Early-exit  
branch 2

Detections 

Detections 

Base DNN (backbone)

(b) Early-exit DNN with two exit branches

Fig. 5   An illustration of dynamic DNNs with two popular methods: a network (neuron) pruning, b early-
exit

Fig. 6   The accuracy comparison of sub-networks (generated with different pruning ratios) trained sepa-
rately and jointly. The accuracy curve of all sub-networks embedded in one big base DNN network and 
trained jointly is close to that of sub-networks trained separately (with separate parameter sets). Here, the 
architecture of all sub-networks used in the experiment is similar to the AlexNet architecture employed 
in SubFlow (Lee and Nirjon 2020) and trained on the CIFAR10 classification dataset (Krizhevsky et al. 
2009)



1 3

Real-Time Systems	

latency-bounded execution per input request (a prerequisite in many inference serv-
ing systems (Gujarati et al. 2020)).

SubFlow (Lee and Nirjon 2020) and Heo et al. (Heo et al. 2020) propose to execute 
sub-networks within latency bounds depending on the changing compute resource 
or time budgets, but by trading accuracy for latency guarantees. One of the main 
drawbacks of such an approach is a significant loss in accuracy when sub-networks are 
not retrained. If we retrain sub-networks separately, it generates a separate parameter 
set for every sub-network, and thus, we arrive at the same problem of high switching 
costs as in bag-of-models. OFA (Cai et al. 2020) and DRESS (Qu et al. 2022) propose 
joint training for all sub-networks together, avoiding different parameter sets for 
different sub-networks. Figure 6 shows the accuracy comparison between sub-networks 
(generated with different pruning ratios) when trained separately and jointly. The 
accuracy curve for sub-networks trained jointly is close to that of sub-networks trained 
separately for the classification task. The joint training thus can help us embed all sub-
networks in one big base DNN. However, as many inference serving systems require 
latency-bounded execution, we have to forgo the sub-network selection technique based 
on the input content, especially in the batching scenario where inputs in the batch can 
have different content. That means we miss an opportunity to optimize the sub-network 
selection for accuracy.

Another method to enable dynamic DNN execution is to exit early from the DNN 
(a.k.a. early-exit DNNs, as illustrated in Fig. 5b), when the input data is easy to infer, 
thereby amortizing the computational cost (Teerapittayanon et al. 2016). To that end, 
we need to place exit branches at intervals along the base DNN to decide and exit when 
partial execution up to the exit point is confidently accurate in its prediction. The exit 
decision from the early-exit DNN primarily depends on the input content (difficulty 
level) and less on the latency constraint. Therefore, we cannot optimally utilize early-
exit DNNs for latency-bounded execution due to their coarse-grained execution choices 
(only a few exit branches are available). However, the batched inference scenario that 
is typical in inference serving systems, provides opportunities to utilize early-exit 
DNNs. When some input requests in the batch exit early, the computational need of 
those exited input requests becomes zero in the subsequent execution, allowing more 
compute resources and thus faster completion opportunity for the remaining requests in 
the batch.

While dynamic DNNs can offer benefits to inference serving systems, training 
them is still a non-trivial, resource- and time-consuming process, especially when 
combining network pruning and early-exit techniques. Furthermore, all existing 
works on early-exit focus primarily on the classification task  (Teerapittayanon et  al. 
2016; Laskaridis et al. 2020b), sometimes on the segmentation (Li et al. 2017), or text 
generations tasks (Schwartz et al. 2020), and rarely on the object detection task which 
is an important fundamental task in many video analytics applications. In Sect. 5, we 
sketch a design for leveraging dynamic DNNs for the object detection task to improve 
the performance of batched inference and DNN adaptation. Note that, while object 
detection is chosen here as an application task, Jellyfish is equally applicable to many 
other tasks.
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3 � Jellyfish design

Jellyfish’s primary goal is to serve all the inference requests from multiple clients over 
the network and meet the request deadlines as defined by their SLOs. In this section, 
we discuss the architecture, general workflow, and main components of Jellyfish, which 
work in tandem to achieve the goal.

3.1 � Overview

An overview of the Jellyfish system architecture is shown in Fig.  7. Jellyfish 
supports multiple clients simultaneously, and its major components are located on 
the edge side. When the clients ❶ send the requests to the edge over the network, 
the dispatcher component takes the client-DNN mapping from the scheduler and 
❷ distributes the requests to workers running the expected DNN. Each worker is a 
separate process (on one or more edge servers) holding some GPU resources to ❸ 
serve inference requests with the batch size selected by the scheduler. The worker 
manager ❹ deploys DNNs (stored in the DNN zoo) to the workers following the 
DNN selection decision by the scheduler. The scheduler provides the intelligence 
of Jellyfish, where it takes the latency-accuracy profiles from the DNN zoo and the 
monitored information from the client daemon as input, and ❺ runs our scheduling 
algorithms periodically to decide the client-DNN mapping, DNN selection 
(adaptation), and batch size for each worker. The scheduler then ❻ informs all the 
clients about the input size of their mapped DNNs to start sending new requests at 
that particular input size (i.e., data adaptation aligned with DNN adaptation).

While Jellyfish is an edge-centric inference serving system, it requires some basic 
support (as daemons) from clients: (1) a metadata exchange mechanism (piggy-
backed on the normal inference requests/responses) for sharing client side monitored 
information including the inference request rate and estimated network bandwidth, 
and the input size dictated by the client-DNN mapping from the scheduler, (2) a 
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Fig. 7   An overview of the Jellyfish system architecture
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request preprocessing mechanism that adjusts the data to match the DNN input 
size or to the maximum possible size when matching exactly the DNN input size is 
impossible due to poor network conditions.

The end-to-end latency consists of two parts: network time (request and response) 
and compute time on the edge (for request dispatching and handling, request 
preprocessing if any, queuing, and DNN execution).

3.2 � System components

Dispatcher The dispatcher distributes inference requests from clients to their 
respective workers. It first fetches the client-DNN mapping from the scheduler and 
then redirects the requests to the workers running the corresponding DNNs. The 
dispatcher also handles all the connections to clients and includes service endpoints 
to interact with the clients, e.g., to (de)register clients in the system.

Worker Each worker is statically allocated on one GPU and maintains a local 
queue to buffer incoming requests. The worker process batches requests (resizing 
them if needed) in the queue and sends the request batches to the DNN deployed 
on the GPU for execution. The worker also implements a lazy dropping policy 
at the queue where requests that are too late to be processed by the current DNN 
will be dropped directly without further processing (similar to  (Shen et  al. 2019; 
Gujarati et  al. 2020)). We exclusively employ GPUs for the DNN inference task 
analogous to other serving systems   (Shen et  al. 2019; Gujarati et  al. 2020). Our 
system and algorithms equally apply to CPUs or other accelerators, provided that 
the predictability and stability of inference latencies hold.

Worker manager The worker manager is responsible for deploying and adapting 
DNNs on the workers. Supplied with the DNN selection decision made by the 
scheduler, the worker manager fetches the DNN from the DNN zoo and loads the 
DNN (moving from the host memory to the GPU memory) on the GPU of the 
worker. The worker manager also instructs the worker about the batch size to use 
with the deployed DNN. Upon receiving new decisions from the scheduler, the 
worker manager swaps out the current DNNs and loads the new DNNs. However, 
swapping DNNs on the GPU can be time-consuming and cause delays in DNN 
updates. To alleviate this issue, we preload a set of DNNs that are neighboring (in 
input size) the currently selected DNN (see Sect. 4.4).

Scheduler The scheduler provides the intelligence of the system by making the 
adaptation decisions. The goal of the scheduler is to maximize the overall accuracy 
while meeting the latency SLOs for all clients. The scheduler continuously collects 
and maintains the following information: client state (i.e., request rate, SLO, and 
bandwidth estimation), edge state (currently deployed DNNs and client-DNN map-
ping), and DNN profiles from the DNN zoo. The scheduler then feeds such informa-
tion to a set of scheduling algorithms periodically (or upon system state changes) to 
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(re)generate decisions for DNN selection, batch size, and client-DNN mapping. We 
layout the detail of the scheduling algorithms in Sect. 4.

DNN zoo The DNN zoo keeps a set of DNNs with different input sizes for the 
same DL inference task, enabling latency-accuracy tradeoffs in DNN adaptation. To 
generate these DNNs with varying architectures and input sizes, there exist several 
techniques, such as bag-of-models  (Han et  al. 2016), early-exit  (Laskaridis et  al. 
2020a), and neural architecture search  (Cai et  al. 2020). We leverage the bag-of-
models2 technique to select a list of pretrained DNNs. We sort DNNs in increasing 
order of their input sizes. After sorting, we expect the accuracies of these DNNs 
to follow an increasing order; otherwise, we simply remove the DNNs with lower 
accuracy but a larger input size. We profile (and store) the latency and accuracy of 
these DNNs for different batch sizes.

Client daemon The client runs a daemon process to collect local metadata (e.g., 
request rate, bandwidth estimation, and SLO) to share with the scheduler on the 
edge. Upon the transfer of each inference request, the client daemon estimates the 
network bandwidth for that request. To this end, we can employ the online network 
bandwidth estimation techniques used in recent works  (Du et al. 2020; Laskaridis 
et al. 2020a; Ran et al. 2018; Yin et al. 2015).

3.3 � Online latency budget estimation

Our scheduling algorithm requires an estimate of the compute (latency) time budget 
for every client to optimally select and map DNN models. As discussed above, the 
total time budget (i.e., end-to-end latency SLO) is composed of the time spent on 
the network (network time) and the time required for inference request handling 
(compute time). This relationship can be expressed as:

We then use the compute time as the latency budget available for request handling 
on the server, which includes request queuing, input data preprocessing, and DNN 
execution. We also factor in other constants or measurable delays, such as the 
dispatch time between the dispatcher and the worker units. As the time spent by 
requests on the communication network is variable and depends on the real-time 
network bandwidth (see Fig.  2), the latency budget is highly dynamic and, thus, 
needs to be computed online and continuously adjusted.

The network time is mostly dominated by request transfer time from the client 
to the server, as the size of the input data is typically much larger than the response 
(i.e., the inference result). To compute the network time for a client, we estimate its 
real-time network upload bandwidth (throughput) and calculate the time per request 
as:

compute_time = SLO − network_time

2  A collection of functionally-equivalent DNNs with varying architectures and latency-accuracy tradeoff 
profiles.
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Here, s is the input data size (after compression) and W is the network throughput. 
RTT​ is the round-trip propagation delay that can be measured using existing tools 
like ping. To efficiently estimate the network bandwidth over time, we can lever-
age the bandwidth estimation techniques adopted in several recent works such as 
DDS (Du et al. 2020), SPINN (Laskaridis et al. 2020a), DeepDecision (Ran et al. 
2018), or FastMPC (Yin et al. 2015). We will detail our implementation on band-
width estimation further in Sect. 6.

4 � Scheduling algorithms

In this section, we provide the formulation of the scheduling problem and present 
our algorithm design. Table  1 contains a list of notations used in the problem 
formulation.

4.1 � Problem formulation

Suppose the DNN zoo holds a set of diverse DNNs denoted by 
� = {m1,m2, ...,mM} . Each DNN mj ∈ � is associated with profiles including 

(1)network_time =
s

W
+ RTT

Table 1   List of notations

Symbol Description

� Set of GPU workers
� Set of diverse DNN models
sj Input size of DNN mj

aj Expected accuracy of DNN mj

lj(b) Inference latency of DNN mj for batch size b
tj(b) Throughput of DNN mj for batch size b
ℂ Set of clients
Oi Pre-specified latency SLO (ms) of client ci
�i Request rate of client ci
Lij Latency (compute) budget of client ci for DNN mj

si Request (data) size of client ci
Wi Estimated network bandwidth of client ci
xijk Binary decision variable to denote if a client ci is mapped to DNN mj deployed on 

GPU worker gk
bk Integer decision variable to denote the batch size for the selected DNN on worker gk
zkj Auxiliary decision variable to denote the selection of DNN mj on GPU worker gk
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inference latency lj(b) , throughput tj(b) = b∕lj(b) , and expected accuracy aj , 
where b ∈ [1...B] is the batch size bounded by a given integer B. We enumerate 
the DNNs in set � in the increasing order of the inference latency. Similar to 
other works  (Ran et al. 2018; Wan et al. 2020; Zhang et al. 2020a), we assume 
that a smaller DNN (i.e., with smaller input size) has lower inference latency, but 
also lower expected accuracy. The accuracy of DNNs can be modeled as a non-
decreasing function of the DNN size  (Wang et  al. 2020). The inference latency 
can be modeled as an increasing function of the DNN size and the batch size. 
When the batch size increases, the inference latency grows sub-linearly, leading 
to increased throughput with diminishing returns at larger batch sizes  (Kannan 
et al. 2019).

The set of workers performing DL inference is represented by 
� = {g1, g2, ..., gK} . We assume each worker exclusively occupies one GPU to run 
the DNN to serve inference requests. More fine-grained GPU sharing mechanisms 
such as NVIDIA multi-process service (MPS) or multi-instance GPU (MIG) can 
also be employed  (Yu et  al. 2022), where each instance is treated as a separate 
worker. The DNN execution time is highly predictable (Gujarati et al. 2020), so 
we use DNN latency profiles obtained offline for online latency prediction.

Suppose the system is serving a set of clients given by ℂ = {c1, c2, ..., cN} . Each 
of the clients ci generates inference requests with input size si at rate �i . Both the set 
of clients and the request rate can be time-varying; for the ease of expression, we 
omit the time index in the notation. Each client will be mapped to a worker on the 
edge side and inference requests from this client are sent to that particular worker. 
The client also specifies the SLO, i.e., the end-to-end inference latency, as Oi . The 
network bandwidth at client ci is denoted by Wi , which is estimated by the client dae-
mon as discussed in Sect. 3.2.

The scheduling problem of Jellyfish aims to find the optimal multiset of DNNs to 
be deployed on the workers, the client-DNN mapping, and the batch size for each 
worker, so as to maximize the expected accuracy of all served inference requests. We 
introduce a binary decision variable xijk ∈ {0, 1} to denote if a client ci is mapped 
to DNN mj deployed on worker gk and an integer decision variable bk ∈ [1...B] to 
denote the batch size for the selected DNN on worker gk . We also introduce an aux-
iliary decision variable zkj ∈ {0, 1} denoting the selection of DNN mj on worker gk . 
The scheduling problem can be formulated with the following integer program:

(2)(P1) max
{x,b}

∑
i,j,k aj ⋅ �i ⋅ xijk

(3)s.t.
∑

j,k xijk = 1,∀i

(4)
∑

j zkj ≤ 1,∀k

(5)zkj ≥ xijk,∀i, j, k
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The aim is to maximize the overall accuracy by serving requests with more accurate 
DNNs, given all requests are served within their SLOs. Thus, Eq.  (2) defines the 
overall accuracy metric as the objective to maximize. Each client is mapped to only 
one DNN and one worker as specified in Eq. (3). Equation (4) captures that at most 
one DNN is selected for each worker. Equation  (5) guarantees that all clients are 
mapped to the same and correct DNN when they are mapped to the same worker. 
Equation (6) enforces the latency constraint specified with respect to the edge-side 
latency (compute) budget Lij when mapping client ci to DNN mj . The latency budget 
can be calculated as mentioned in Sect. 3.3 (i.e., by subtracting network time from 
SLO). We cap the queueing delay for an inference request on the edge side at the 
DNN execution time lj(bk) (representing the worst case), which is also used in (Shen 
et al. 2019). Thus, the latency (compute) budget should be at least twice the DNN 
execution time. Equation (7) guarantees that the DNN mj on worker gk has adequate 
throughput capacity to support the aggregate request rate of all the mapped clients.

The above problem is hard to solve and existing solvers for mixed-integer linear 
program (MILP) cannot handle it in reasonable time (e.g., within a second). Our 
MILP implementation of the problem in CPLEX takes around 20s to 15min time with 
4  threads for finding the optimal solution for a representative setup of 4 workers, 16 
clients, and 16 DNNs with a maximum batch size of 12. To handle the complexity, we 
propose to tackle the problem by splitting it into two sub-problems: (1) client-DNN 
mapping and (2) DNN selection. We optimize each sub-problem iteratively to improve 
the overall accuracy objective without violating the latency SLO constraint.

4.2 � Client‑DNN mapping

We first discuss the client-DNN mapping problem, which later serves as a building 
block for the DNN selection problem. The goal is to map the set of clients to a given 
set of DNN instances, optimizing the overall accuracy as defined in Eq. (2). Our client-
DNN mapping algorithm is based on the key observation that the overall accuracy 
is maximized when the larger DNNs (more accurate ones) are assigned with higher 
aggregate request rates. We adopt a greedy approach where we first find clients and 
map them to the largest DNN to ensure the maximum possible aggregate request rate. 
Then, we repeat the same for the remaining clients and DNNs in descending order of 
DNN size (i.e., accuracy). The above process is listed in the MapClients function in 
Algorithm 1.

Now, the problem becomes how to find a subset of clients with the maximum pos-
sible request rate for a given DNN while meeting the SLOs of all these clients that 
may have diverse request rates and latency budgets. The key for solving this problem 
is to decide what batch size to use for the DNN as it dictates the maximum inference 

(6)
∑

j,k xijk ⋅ 2lj(bk) ≤
∑

j,k xijk ⋅ Lij,∀i

(7)

∑
i,j xijk ⋅ �i ≤

∑
j zkj ⋅ tj(bk),∀k

vars xijk, zkj ∈ {0, 1}, bk ∈ [1...B]
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throughput. Using small batch sizes reduces the throughput, thus limiting the aggre-
gate request rate; if we opt for large batch sizes to ensure enough throughput, the infer-
ence latency increases, thus challenging the SLOs of the assigned clients as specified in 
Eq. (6).

We observe that, given a fixed batch size, the client-DNN mapping problem reduces 
to a standard 0-1 knapsack problem, where we treat clients as items, the request rates of 
clients as weights and values, and the maximum throughput of the DNN for the given 
batch size as the knapsack capacity. The problem can be solved by existing algorithms, 
but we still need to iterate over all possible batch sizes, which is time-consuming.

Algorithm 1: Client-DNN Mapping

Dynamic programming We propose an efficient solution based on dynamic pro-
gramming (DP) to find the optimal client-DNN mapping for a given DNN across all 
possible batch sizes in one shot, as listed in function FindOptimalClients in 
Algorithm 1. The idea is to enumerate all possible aggregate request rates that can 
be assigned to the DNN up to a maximum throughput value at the largest batch size 
possible and use them as columns in the DP matrix, as depicted in Fig. 8. We then 
recursively start computing the cell values (aggregate request rate) for each row rep-
resenting clients in descending order of their latency budget. For each client (row), 
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we identify the largest batch size for which the latency constraint is satisfied and 
use it to identify the largest enumerated column in the DP matrix (lines 13 − 15 ) up 
to which the cell values are computed, and the remaining cell values are kept zero. 
Line 18 − 27 covers the standard DP iteration for a row (client). Finally, we perform 
a standard backtracing from the best cell (maximum aggregate value) to find the 
optimal subset of clients.

Example Fig. 8 illustrates a simple example of mapping five clients to DNN mj . 
The DNN at batch size bj = 3 can satisfy the latency constraint of three clients, c1, 
c2 and c3. Whereas at batch size bj = 2 , the DNN can satisfy two more clients, c4 
and c5. At batch size bj = 3 , the theoretical throughput tj(3) of the DNN is 80 and all 
three clients with aggregate request rate 40 can be assigned to this DNN mj . There-
fore, the optimal request rate assigned to the DNN at batch size three is 40, denoted 
by �opt

j
(3) . However, at batch size bj = 2 , the theoretical throughput tj(2) of the DNN 

is 60. Here, multiple subsets of clients are possible, e.g., one subset is {c1, c2, c3, c5} 
and another is {c1, c2, c4, c5} with aggregate request rate of 50 and 60, respectively. 
Therefore, the optimal request rate assigned to the DNN at batch size two is 60, 
denoted by �opt

j
(2) . Finally, the optimal request rate assigned to the DNN is 

max(�
opt

j
(3), �

opt

j
(2)) , i.e., 60 at batch size bj = 2 with clients {c1, c2, c4, c5}.

Optimality For a specific DNN, the DP-based solution is optimal. However, when 
mapping clients, multiple cells with the maximum aggregate request rate may exist 
in the DP table. We then choose the mapping randomly, and this might affect the 
optimality of the overall solution. As shown in Sect.  7.6, our approach (together 
with DNN selection) is near-optimal.

Time complexity In the worst case, the step size h (Line 12) in DNN through-
put enumeration is one, and therefore, the total number of columns in the DP 
matrix is equal to the maximum throughput in the DNN Zoo ( tmax ). The asymptotic 

Fig. 8   An illustrative example to show the DP-based algorithm
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complexity for mapping clients to GPU workers becomes O(|𝔾| ⋅ |ℂ| ⋅ tmax) , where 
� and ℂ are the set of workers and clients.

4.3 � DNN selection

Once the client-DNN mapping is in place, the next question is how to select the 
optimal (multi-)set of DNNs, where the size of the set is equal to the number of 
workers.

Finding the optimal set from the large space of size 
(
|�| + |�| − 1

|�|

)
 to serve 

multiple clients that have varying characteristics like different SLOs, request 
rates, and network conditions, is nearly impractical using an exhaustive search. 
There are two criteria for optimality: (O1) the fraction of the total number of 
clients that can be mapped to the selected DNN set, (O2) the average accuracy 
improvement as defined in Eq. (2). To compute these metrics, we use client-DNN 
mapping (Algorithm  1) as a building block for every candidate DNN set. The 
exhaustive search thus becomes even more expensive.

Simulated annealing We choose to use simulated annealing (SA)  (Aarts and 
Korst 1990), a local search technique based on random walks that avoid being 
stuck in local optima when exploring the solution state space. SA accepts weak 
solutions with some probability defined by a parameter named temperature T. The 
acceptance probability is high initially due to the high temperature; it decreases 
with the decrease of the temperature.

Algorithm 2: DNN Selection Based on SA

Algorithm 2 depicts our iterative SA algorithm that performs collective DNN 
adaptation. We start the SA process by mapping clients (using Algorithm 1) to 
some previous or initial set of DNNs. In our implementation, the initial (i.e., 
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bootstrap) set of DNNs contains the smallest-size DNN instances from the 
DNN zoo. Unlike in conventional SA, we have two modes of operation, namely 
DEGRADE and UPGRADE. We first start the DNN’s exploration in DEGRADE 
mode, meaning we reduce the DNN size to generate the next state of neighboring 
DNNs. This is to first serve the minimum number of clients, for satisfying the 
optimality criteria O1. If we may repeat, the degraded DNNs have lower latency 
and higher throughput, therefore, improves the possibility of serving more clients. 
As soon as O1 is satisfied, we switch the state (DNNs) exploration to UPGRADE 
mode. Here, the idea is to select mainly the larger DNNs to improve the accuracy 
objective (i.e., optimality criteria O2) without violating O1.

Simulated annealing parameters Although the SA framework has been widely 
used, applying it in practice is highly problem-specific due to a non-standard 
approach of selecting the algorithm parameters such as the neighbors’ generator 
function, acceptance probability, and stopping condition. We determine the SA 
parameters in Algorithm 2 for DNN selection as follows:

•	 Stopping Condition (Line 6): One crucial property of SA is that it offers a good 
tradeoff between exploration and exploitation controlled by the temperature 
T and its temperature reduction strategy (a.k.a. the cooling schedule). In the 
UPGRADE mode, we stop the exploration when the temperature falls below the 
minimum temperature Tmin . However, in the DEGRADE mode, we stop much 
earlier when O1 is satisfied.

•	 Neighbors Generator (Line 7): To effectively explore the search space, we 
generate neighboring states (i.e., DNN set) based on the operational mode. In 
DEGRADE mode, we decide randomly whether to downgrade the DNN size in 
the set (state) by one step or keep it the same. In the UPGRADE mode, we also 
add a random decision to upgrade the DNN by one step.

•	 Better Solution (Line 9): The function named Better() defines the quality of 
the current solution. In the UPGRADE mode, the solution is better if it does not 
violate O1 and has higher accuracy. Here, we define accuracy as the weighted 
average of all clients’ inference accuracy (determined by the DNN’s profiled 
accuracy to which it is mapped, otherwise zero), where the clients’ frame rate 
determines the weight (see Eq.  (2)). In the DEGRADE mode, the solution is 
better if it improves O1.

•	 Acceptance Probability (Line 12): Accepting a weak solution is determined by 
the difference (named diff) between the weak solution and the current solution. 
In the DEGRADE mode, the diff is simply the difference between the value O1 
of two solutions. In the UPGRADE mode, if the new solution does not violate 
O1, the diff is between the value O2 of the two solutions; otherwise, the solu-
tion is dropped. The probability of acceptance also depends on the value of tem-
perature T that decreases over iterations by a reduction factor �.

The effectiveness of SA depends on the initial value of T, the minimum temperature 
Tmin , and the temperature reduction factor � . In our simulation, we found the initial 
value of T = 0.0125 , Tmin = 0.0005 and � = 0.99 offers decent performance. Note 
that the accuracy value of a solution is in the range [0, 1]. Intuitively, it means that 
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we accept the weak solution with high probabilities when the absolute diff value is 
lower than the T value.

4.4 � DNN update

Once the set of DNNs is selected for the current clients, the DNNs must be loaded 
onto the workers. However, loading a DNN on a GPU can incur a considerable time 
overhead due to the launching of CUDA kernels, transfer of DNN parameters, etc. 
To mitigate this issue, we prefetch DNNs on GPUs. More specifically, we employ 
a prefetching technique based on the nearest-neighbor policy where we pre-load 
DNNs neighboring the currently loaded one. When a new set of DNNs is selected, 
we order and match the new set to the old set such that the distance between the 
enumerated DNNs is minimized, so as to benefit most from prefetching. This 
problem is similar to the well-known stable marriage problem, and we solve it by 
sorting the old and new sets in decreasing order of the DNN size. We then assign the 
workers running DNNs from the previous set to the new DNNs in an element-by-
element fashion.

5 � Design sketch for dynamic DNNs

In this section, we sketch a design for leveraging dynamic DNNs for the object 
detection task by combining the best of the two methods used for creating dynamic 
DNNs: (a) network pruning for creating fine-grained DNN variants (sub-networks) 
to switch between them dynamically on-the-fly, avoiding the DNN switching cost 
and (b) early-exit for optimizing the performance of batched inference. The per-
formance gain of early-exit manifests in three aspects: (1) Inference requests that 
exit early with high confidence reduce the inference latency of these requests. 
(2) When a portion of the batch exits early, the batch size drops, and thus, more 
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Transformer

Encoder Decoder

6 layers 6 layers

Runtime 
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Runtime 
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Encoder
3 layers

Decoder
3 layers
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Fig. 9   Dynamic DNN based on a transformer-based vision model (e.g., DETR) to generate different 
DNN variants by pruning the backbone network with different pruning ratios. The early-exit branches 
optimize, in the case of batched inference, latency and accuracy by enlarging (i.e., reducing the pruning 
ratio) the backbone stage for inference requests in the remaining batch
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compute resources can be allocated to the requests remaining in the batch, leading to 
faster completion of these requests. (3) The availability of extra compute resources 
resulting from early-exit creates the opportunity of reducing the pruning ratio of 
the remaining layers in the DNN variant (i.e., enlarging the subsequent layers). The 
enlarged part of the DNN for the remaining requests in the batch can potentially 
contribute to accuracy improvement. Figure 9 shows our proposed dynamic DNN 
for the object detection task, and we explain the inference workflow in the following 
parts.

5.1 � Dynamic DNN creation for object detection

Many works on dynamic DNN execution, especially on early-exit DNNs, have 
focused on a simple classification task and rarely on complex regression tasks like 
object detection (Han et al. 2022). One of the reasons is that typical object detection 
models have a highly compute-intensive object detection head (for region proposals, 
classification and regression)  (Ren et  al. 2017) and are tightly integrated with the 
feature extractor in the case of single-stage object detectors  (Bochkovskiy et  al. 
2020). Thus, adding multiple heavy object detection heads as exit branches defeats 
the primary objective of saving computations.

Recently, transformer-based vision models such as DETR  (Carion et  al. 2020) 
and Deformable DETR  (Zhu et  al. 2021) have become increasingly popular for 
object detection. These models use popular DNN architectures like ResNet to extract 
image features and pass these features through the transformer block (containing an 
encoder-decoder module) to output detections. Fortunately, the execution time of the 
transformer block is relatively small compared with their feature extractors (called 
the backbone DNN) (Sreedhar et al. 2022; Samplawski and Marlin 2021). Therefore, 
we can add lighter transformer blocks as exit branches at critical points in the back-
bone DNN, thus enabling effective early-exit for object detection. Furthermore, we 
use network pruning techniques on the backbone DNN (i.e., the feature extractor) to 
create DNN variants, thereby realizing our idea of dynamic object detection DNN 
model with early-exit functionality.

Figure  9 shows our proposed DNN architecture based on vision transformers 
for object detection combining network pruning and early-exit techniques. In the 
figure, the Jellyfish scheduler ❶ selects a DNN variant with an initial pruning ratio 
of 0.6 (fraction of DNN to be pruned) to be deployed on a GPU for serving input 
requests with a batch size of 5, given a fixed compute time budget. The batched 
input goes through stage 1 (a block of consecutive layers) of the backbone network. 
The output feature from the first stage ❷ moves to the first transformer block (i.e., 
exit branch 1). At exit branch 1, the easy-to-predict requests from the batch might 
exit confidently, leading to a decrease in batch size at stage 2. As the batch size 
decreases in stage 2, allowing for more compute resources per inference request in 
the batch, we can reduce the pruning ratio of stage 2 (i.e., enlarging the backbone 
network in this stage) without affecting the overall batch execution time. Even if 
we do not enlarge the network in stage 2, it can still accelerate the execution of the 
remaining batch. The remaining batch then ❸ passes through (the enlarged version 
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of) stage 2 of the backbone. Finally, the remaining batch features ❹ are fed into the 
second transformer block (i.e., exit block 2) to get the predictions for the remaining 
requests in the batch. In practice, we use a “transformer" head, but as a concept, it is 
a more general “classifier" or “prediction" head that does not necessarily has to be a 
transformer.

The above design allows smooth runtime adaptation of DNN variants with 
negligible costs and accelerated execution of batched inference. In addition, we 
expect a gain in overall accuracy for a fraction of the requests (the ones that do not 
exit-early) due to the enlargement of stage 2 (with a new and low pruning ratio of 
0.4) compared to passing the whole batch through a static DNN variant with a high 
pruning ratio of 0.6.

A major challenge is how to decide when to exit early, a non-trivial problem 
for the object detection task. We explain our approach to designing an early-exit 
decision-making module in Sect. 5.3.

5.2 � DNN training

Training our dynamic DNN with the network pruning and early exit functionality 
involves a multi-step process, as it should train multiple exit branches. We build 
our training process on top of existing multi-step training strategies adopted in the 
early exit paradigm (Laskaridis et al. 2021; Matsubara et al. 2023). Our multi-step 
training process works as follows: In the first step, the main exit branch is trained 
end-to-end together with the backbone DNN. As the backbone DNN contains 
different DNN variants generated with different pruning ratios, we must jointly train 
all the DNN variants, similar to DRESS (Qu et al. 2022). That means the main exit 
branch should be trained on features from all DNN variants, and we should combine 
(aggregate) the loss values for all the DNN variants when back-propagating. Once 
the main exit branch (on all DNN variants) and the backbone DNN are trained, we 
train the remaining early-exit branches in the second step. In this step, we train only 
the respective exit branch and freeze other parts of the backbone DNN. Similar to 
the first step, we must train exit branches on features from all the backbone DNN 
variants.

5.3 � Early‑exit decision making

Once we have our fully trained dynamic DNN, the question is how to decide 
when to exit from a particular exit branch. Compared with the classification task, 
the decision to exit from a particular exit branch is non-trivial and is an under-
explored topic for regression tasks like object detection (Laskaridis et al. 2021). For 
classification tasks, the simple approach is to compare the top class score or entropy 
of the softmax output vector of the exit branch against a predefined threshold to 
make an exit decision (Teerapittayanon et al. 2016). However, for object detection, 
we need to examine and quantify various factors, including the object class scores of 
bounding boxes, the bounding box area and the number of bounding boxes recalled 
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correctly, thus making it hard to formulate the exit decision-making strategy. The 
class score of bounding boxes is relatively easy to measure and quantify using 
similar approaches to the classification task. However, estimating the accuracy of 
bounding boxes and the number of bounding boxes recalled is a hard problem in the 
absence of the ground truth.

Our approach is to use a learning-based module, e.g., a lightweight binary 
classifier. The classifier takes some extracted features (intermediate or output 
features) from the exit branch and outputs a scalar value (in [0, 1]), indicating the 
confidence in the outputs of the exit branch. A high value indicates that the output 
(prediction) of the exit branch is likely accurate. The real challenge is training such 
a binary classifier. To address this challenge, we propose to create a training dataset 
of positive and negative samples based on the loss value between the exit branch 
output and the ground truth. We can use the same loss function used in training the 
full DNN model to compute the loss value. The samples with a loss value lower 
than a predefined threshold contribute to positive samples, and to negative samples 
otherwise. Once the training dataset is created, the learning-based module can be 
trained like any other binary classifier.

Our learning-based approach appears promising in making exit decisions. In 
our preliminary experiment with the object detection model (ResNet50-DETR) 
and two-exit branches, the main branch achieves an accuracy of 0.623 mAP (mean 
average precision) on the COCO-val2017 image dataset (Lin et al. 2014), and exit-
branch 1 achieves 0.401 mAP when all validation samples exit from the respective 
branch. With the oracle that makes an early-exit decision reasonably accurate, the 
overall mAP of the early-exit DETR is 0.594, where 35.76% of samples exit from 
exit-branch 1. The oracle is based on the dataset of positive and negative samples 
generated using the loss values and a predefined loss threshold (as described above). 
Our learning-based decision-making module achieves 0.587  mAP for 30.94% 
of samples exiting from the first exit branch, demonstrating the high potential of 
enabling an early-exit functionality for the object detection task.

5.4 � Dynamic DNN summary

To summarise, dynamic DNNs generated with a combination of network pruning 
and early-exit functionality have the potential to avoid the DNN switching cost 
by embedding all DNN variants as sub-networks in one shared base DNN. The 
early-exit functionality can be used for efficient execution of the batched inference 
thanks to the reduced computation for the remaining batch with a reduced number 
of inference requests, or it can be used to improve accuracy by enlarging the DNN 
for the remaining batch. Specifically, a transformer-based vision model enables the 
early-exit functionality for the object detection task attributed to their lightweight 
detection head. In Sect. 8, we demonstrate the applicability of our design to Jellyfish 
through preliminary evaluations.
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6 � Implementation

We implement a Jellyfish system prototype (around 4K lines of Python code) using 
the Pytorch framework for DNN inference on GPUs. We also provide simulation 
scripts to test the performance of our scheduling algorithms for different DNNs, 
clients, and GPU configurations. The source code is publicly available at: https://​
github.​com/​vuhpdc/​jelly​fish.

Hardware setup We carry out parts of our experiments on a server equipped with 
an Intel Core i9-10980XE CPU (36 cores), 128GB DRAM, and two GPUs (NVIDIA 
RTX2080Ti), running Ubuntu 18.04. We then use another server equipped with an 
Intel Core i7-8700K CPU (12 cores) and 32GB DRAM to emulate multiple clients, 
ensuring that compute, memory, and network bandwidth are not the bottleneck. The 
original bandwidth between these two servers is 1Gbps. We use the Linux tc utility 
to control clients’ bandwidth and replay real-world network traces. For large-scale 
experiments, we use AWS instances to deploy the clients and GPU workers (see 
Sect. 7.5).

Software details We expose Jellyfish service APIs through standard gRPC calls 
and use a bidirectional stream mechanism to handle continuous request-response 
client streams. Currently, the dispatcher module includes a multi-threaded gRPC 
server. The scheduler module runs in a separate process at a periodic interval of 
half a second unless specified explicitly. Each worker runs two processes: one to 
receive requests and load DNNs and the other as a DNN executor running with the 
highest priority. The communication between processes on the same machine is 
done through Python SimpleQueue (i.e., a Pipe) and PyZMQ over TCP on the 
distributed server. For stable and deterministic performance, we disable NVIDIA’s 
cuDNN optimisations and control randomness with manual seed values  (PyTorch 
2022). For frame (image) compression, we use a JPEG encoding scheme with 
a high compression level to trade a slight degradation in analytics accuracy for 
speed. Furthermore, we hold all DNNs in the DNN zoo in memory to avoid disk IO 
overhead.

Placement of system components On a stand-alone, multi-GPU server, the 
dispatcher, scheduler, and each worker run in their own processes on the same 
machine. Therefore, the server should have sufficient download network bandwidth, 
enough CPU cores to run each process on dedicated cores, sufficient DRAM to hold 
the DNN zoo and store incoming requests (aggregate of all clients). On distributed 
servers, the dispatcher and scheduler processes run on a front-end machine, whereas 
workers run on separate machines where GPUs are installed. The front-end machine 
should be a powerful server to handle connections from multiple clients. The 
network between front-end and worker machines should not be a bottleneck and 
should have predictable dispatch latency.

Bandwidth estimation We implement a separate acknowledge mechanism for 
inference requests so that clients can estimate their network bandwidth per request 
by measuring the request input data size and the smoothed round-trip latency. The 
scheduler then uses the harmonic mean (following prior work (Yin et al. 2015)) of 

https://github.com/vuhpdc/jellyfish
https://github.com/vuhpdc/jellyfish
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the client’s bandwidth over the past one second as the estimated bandwidth for the 
client.

Client-side decisions and overhead We implement a very lightweight process 
(in terms of compute, memory and network usage) on clients to apply decisions 
(i.e., data size to use) received from the scheduler running on the server and only 
perform lightweight data resizing and bandwidth estimation, which is typical for 
adaptive-video-analytics systems  (Zhang et  al. 2018a; Ran et  al. 2018; Laskaridis 
et  al. 2020a). Furthermore, Jellyfish imposes a negligible network overhead by 
piggybacking small metadata (a few Kbps) on the video data.

7 � Performance evaluation

We perform extensive experiments for real-world scenarios using object detection 
inference tasks. We demonstrate the effectiveness of Jellyfish by answering the 
following questions: 

Q1	� Can Jellyfish fulfill its goal under variable network conditions and diverse 
client characteristics?

Q2	� How well does Jellyfish perform compared with other DNN inference 
scheduling algorithms?

Q3	� How well does Jellyfish perform on large-scale setups?

Fig. 10   The DNN performance profiles
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7.1 � Methodology

DNN zoo We employ a well-known pretrained YOLOv4 DNN 
architecture  (Bochkovskiy et  al. 2020) and use its Pytorch-YOLOv4 
implementation  (Tianxiaomo 2020) for the object detection task. Importantly, 
YOLOv4 supports different DNN input (frame) sizes by resizing the network 
configuration and using the same weight parameters across all resized networks. 
We choose 17 different DNN configurations whose input sizes (in both dimensions) 
range from 128 to 640 with a step size of 32, indexed from 0 to 16. We discard the 
DNN of size 640 as it has lower accuracy than size 608, but has higher latency for 
execution.

DNN profiles We profile the DNNs (accuracy and latency) using the COCO-
val2017 image dataset  (Lin et  al. 2014) and use the standard comparison metric 
called mean average precision (mAP) to rank the DNNs. Figure  10 shows the 
DNN profiles used in the evaluation. From the throughput profile, we see that 
for the majority of the DNNs, the curve starts plateauing at around batch size 8. 
Furthermore, we use the 99th-percentile (P99) latency profile to keep SLO violations 
low. Unlike the average latency profile, the P99 latency profile curve may not follow 
the non-decreasing trend (as required in our algorithms) due to high tail variations. 
Thus, our latency estimator adjusts the values by conservatively allocating the 
higher latency values of smaller DNNs to larger DNNs.

Video datasets We evaluate our system on the vehicle detection task on highways 
identifying classes such as “cars”, “buses”, “motorbikes”, and “trucks”. Like in 
DDS (Du et al. 2020), we pick three publicly available 10min traffic videos (around 
9K frames each) at 720p resolution. We extract and replay video frames at different 
frame rates to generate requests for clients.

Evaluation metrics We evaluate the system using the following performance 
metrics:

•	 Miss rate: The miss rate describes the fraction of frames that have missed their 
SLOs or have been dropped early in the pipeline due to SLO violations.

•	 Analytics accuracy: We use the F1 score (a harmonic mean of precision and 
recall) with IoU (intersection over union) of 0.5 as a metric to quantify analytics 
accuracy, which is consistent with earlier works like VideoStorm (Zhang et al. 
2017), Chameleon  (Jiang et  al. 2018), AWStream  (Zhang et  al. 2018a), and 
DDS (Du et al. 2020). We exclude missed frames as it is hard to quantify their 
impact on the user application. Similar to DeepDecision (Ran et al. 2018) and 
DDS (Du et al. 2020), we use the detection results of the DNN whose input size 
is equal to that of the original video as ground truth.

•	 Worker Utilization: The worker utilization is the fraction of the total time during 
which workers are busy executing the DNN inferences on GPUs.
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7.2 � End‑to‑end performance

We first analyze the end-to-end performance of Jellyfish under a synthetic network 
trace. Following AWStream (Zhang et al. 2018a), we periodically set each client’s 
bandwidth to a value from the ordered set {20, 15, 10, 7.5}Mbps and keep each 
value for 20 seconds. We test with {1, 2, 4, 8} concurrent clients and draw their 
SLOs from the set of {75, 100, 150} milliseconds (ms) and request rates from the 
set of {15, 25} FPS. The smallest DNN in the DNN zoo has P99 latency of 23ms for 
batch size 1. Thus, we have a lower limit of 75ms (instead of 50ms) in the SLOs set 
for each client because the minimum time budget for computing on the server must 
be 46ms (twice the latency of the smallest DNN, see Eq. (6)). Next, we start clients 
sequentially with a small random wait (in [1,  10]s) between two clients, mimick-
ing random client arrivals/departures and creating a random requests arrival pattern. 
The clients replay the same network trace but start from random points to avoid a 
lock-step behavior. We run each experiment for three iterations and report the mean 
value. Note that mostly two parallel DNNs are selected on two GPUs for serving 
clients at any given moment.

DNN adaptation Fig. 11(bottom) depicts the estimated bandwidth values close to 
the actual bandwidth limits, displaying the accuracy of our bandwidth estimation. 
Figure 11(top) illustrates DNN selection decisions for each client in a setting with 
two clients. It shows that larger DNNs are selected when the bandwidth is higher 
and vice-versa, implying DNN adaptation.

In Fig. 11(bottom), we observe that the error gap between estimated and actual 
bandwidth values increases with the actual bandwidth. Two main factors influ-
ence this error gap: (a) As we use the Linux tc utility to replay network bandwidth 
traces, the difference between the effective bandwidth achieved by the tc utility 
and the actual bandwidth widens with higher actual bandwidth values, leading to 
an increased error gap in the bandwidth estimation. However, we expect this behav-
ior to be absent in real-world scenarios. (b) Our bandwidth estimation technique 
relies on the acknowledgment-based mechanism that introduces extra host delays 
(1-3 ms) on the server side. As the actual bandwidth increases, the impact of these 

Fig. 11   DNN selection for each client in a setting (two clients, 25 FPS, 100ms SLO) under a synthetic 
network trace. Red dots indicate dropped frames
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host delays on network time estimation becomes more significant, resulting in a 
wider gap between estimated and actual bandwidth values. Note that for real-world 
network traces, the estimated bandwidth values may not match precisely the actual 
bandwidth values since we use the harmonic mean of frequently changing past 
bandwidth values.

When the error gap is large, Jellyfish adopts a conservative approach. It assumes 
that requests will spend more time on the network, resulting in low latency budgets 
on the server. As a result, the Jellyfish scheduler selects relatively smaller DNNs, 
slightly degrading the accuracy while maintaining the low miss rates.

Miss rate Fig. 12(top) shows that the overall miss rate is less than 1% for almost 
all settings. We make three observations: (a) The miss rate for settings with 150ms 
SLO is the lowest due to the high compute time budget available on the edge server. 
(b) The miss rate is relatively high (1.153%) for the setting with 100ms SLO, 15 
FPS, and 8 clients. Here, the scheduler often selects two DNNs: a small one with 
a moderate batch size (e.g., DNN index 3 with batch size 3, throughput around 90 
FPS) and a large one with a small batch size (e.g., DNN index 9 with batch size 
1, throughput around 32 FPS). Hence, many clients (e.g., around 6 with an aggre-
gate request rate of 90 FPS) are served by the small DNN. Thus, the small DNN 
is heavily loaded and the requests served by this DNN are more sensitive to the 
micro-bursts of requests created by nonuniform request arrival. On the contrary, and 
perhaps counterintuitive, for the setting with 25 FPS and with the same SLO and 
number of clients as in the 15 FPS setting, the miss rates are slightly lower. This 
is because Jellyfish often selects smaller DNNs with higher throughput to handle 
higher aggregate request rates (i.e., 200 FPS vs. 120 FPS). As a result, selecting 

Fig. 12   The miss rate, accuracy and worker utilization of Jellyfish for varying SLOs, request rates, and 
numbers of clients under a synthetic network trace. We truncate the Y-axis(top) to 1% to focus on the 
extremely low values ( ≤ 1 %) observed in almost all experimental settings
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smaller DNN models for the same latency SLO provides more slack in the latency 
budget per request on the server. This extra slack enables requests to wait longer in 
the queue without being dropped, thereby helping to alleviate the issue with non-
uniform request arrival. (c) The miss rate is unacceptable (15.427%) for the setting 
with 75ms SLO, 25 FPS, and 8 clients, which represents an overloaded situation. 
To support the aggregate request rate of 200 FPS of 8 clients with 75ms SLO, the 
scheduler must select the smallest DNN on each GPU with batch size 4 (the DNN 
latency and throughput being 32ms and 124 FPS, respectively). That means the cli-
ents require a time budget of at least 64ms for computing, which is impossible when 
the client’s bandwidth is low (i.e., 7.5Mbps). Thus, the scheduler often selects the 
batch size of 4 and 3 on each GPU, with the total inference throughput being slightly 
lower than the aggregate request rate, leaving one client unmapped to any of the 
DNNs. Overall, Jellyfish delivers an extremely low miss rate ( ≤ 1 %) when the system 
is not overloaded.

Furthermore, we expect the miss rates (and accuracy) for the 1 client and 
2 clients settings to be comparable due to the similarity in the distributions 
of DNNs selected by the scheduler. However, in our current Python-based 
implementation, the miss rate for the 1 client setting is slightly higher. In the 1 
client setting, only one GPU (and the associated GPU worker) is active at any 
given moment, as dictated by the scheduler. We observe that when a GPU worker 
on our multi-GPU setup is not active for an extended period of time, the few 
subsequent inference requests on that GPU worker experience occasional delays. 
These delays occur during the retrieval of inference requests from the dispatch 
queue, fetching active model information from the loader thread, or executing the 
initial DNN inference on the GPU after a prolonged idle interval. We attribute 
these delays to the internal operations of commodity servers, which employ best-
effort process/queue management and scheduling. While we observe these delays 
often in the 1 client setting, they are rare and have minimal impact, causing 
only slightly higher miss rates. Such occasional delays are one of the reasons 
that providing hard guarantees for the end-to-end latency SLO is challenging, 
especially on commodity setups. As discussed in Sect.  9.1, we expect system 
maintainers to tune the system for maximum predictability and stability when 
deploying Jellyfish-like serving systems.

Analytics accuracy Fig.  12(middle) shows the accuracy of all settings. The 
settings with one or two clients have similar accuracy since requests are served with 
similar DNNs. The accuracy decreases when the aggregate request rate increases. 
Here, the aggregate request rate can increase when the number of clients or their 
frame rate increases. In this case, the scheduler has to lower the DNNs sizes to 
support the higher request rates. However, with larger SLOs, the scheduler can 
select larger DNNs when possible. Consequently, the accuracy at 150ms SLO for 
all settings is higher than that at 100ms or 75ms SLOs. Overall, for all settings, the 
accuracy achieved by Jellyfish is much higher than that achieved by the smallest 
DNN (i.e., the DNN likely to be deployed directly on client devices), demonstrating 
the benefits of offloading inference tasks to the edge server, albeit dynamic networks.

Worker utilization Fig. 12(bottom) shows the aggregate worker utilization ratio. 
The utilization is lower for settings with fewer clients and lower FPS due to lower 
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aggregate request rates and larger arrival times between requests. Once the system 
becomes more saturated with more clients and higher SLOs, the utilization increases 
(up to 75%) because Jellyfish tends to select larger batch sizes and DNNs, thus 
increasing the compute usage.

Furthermore, there are some settings where the utilization can be slightly lower 
for higher aggregate request rates. For instance, in a specific setting with 15 FPS, 
150ms SLO, and 4 clients, the scheduler often selects large DNNs with a small 
batch size (e.g., DNNs with indices 11, 9, and 7 and batch size 1). In contrast, for 
the setting with 25 FPS, 150ms SLO, and 4 clients, the scheduler selects relatively 
smaller DNNs with large batch sizes (e.g., DNNs with indices 7, 5, and 4 and batch 
sizes 3, 4, and 5, respectively), mainly to achieve higher throughput. Because of 
the smaller DNNs in the latter setting, there is more slack in the latency budget per 
request on the server since the number of clients and SLOs are the same. There-
fore, the DNN executor can afford to wait longer for the requests to arrive without 
violating the latency constraint, allowing it to fill the batch with the desired size. 
This longer waiting time results in the DNN executor doing relatively less work and 
slightly more waiting compared to the setting with 15 FPS. Hence, in this particular 
case, the utilization could be slightly lower. Overall, the experiment confirms that 
Jellyfish ’s low miss rates are not at the cost of reduced worker utilization.

End-to-end latency Fig.  13 shows the end-to-end latency CDF for all settings 
except for a setting with 1 client, which performs similarly to the setting with 
2 clients. We see that the median latency increases for all clients when the SLO 
increases as the scheduler selects larger DNNs. For example, the median latency 
is 53.77ms with two clients, 15 FPS, and 100ms SLO, whereas it is 84.62ms with 
15 FPS and 150ms SLO. Although the median latency is much lower (queuing 
time is assumed equal to the DNN inference time), the P99 latency is close to the 
SLO, especially for settings with many clients where the queuing time is high. This 
confirms the importance of using higher (e.g., P99) DNN latency profiles and the 
assumption of worst-case queuing time for low miss rates.

In a nutshell, Jellyfish can fulfill the goal of delivering low miss rates while 
maintaining high accuracy (Q1).

Fig. 13   End-to-end latency CDF for varying SLOs, request rates, and numbers of clients under a syn-
thetic network trace
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7.3 � Comparison with the baselines

Baseline Inspired by Clockwork (Gujarati et al. 2020), we implement a fine-grained 
baseline scheduler based on the earliest deadline first (EDF) policy. The idea is to 
deploy a static DNN on all GPUs and schedule requests with the earliest deadline 
without preemption on the next available GPU worker. Similar to Clockwork, for 
batching requests adaptively, we maintain a global priority queue per batch size 
where new requests are added to every batch queue. The priority of a request in 
a batch queue is determined by the earliest time to schedule the request at the 
respective batch size. We then schedule requests from each batch queue with a 
sufficient number of requests by iterating through batch queues in the decreasing 
order of batch size. The requests are dropped from the particular batch queue when 
the time budget is insufficient for DNN execution. Here, the system design and 
implementation are similar to our setup except for the scheduling logic, as we focus 
our comparison on scheduling algorithms. More importantly, our network time 
estimation helps to compute the variable network time and the variable compute 
time budget per request on the server, which is then used as a deadline for the EDF 
policy.

Fig. 14   Illustration of DNN adaptation for a client in a setting (2 clients, 25 FPS, 100ms SLO) with WiFi 
and LTE traces. Red dots mark dropped frames

Fig. 15   Comparison of Jellyfish with baselines. B_M and B_H have excessive SLO violations making 
them ineffective, while B_L suffers from low accuracy
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Further, we enable data adaptation on clients. The adaptation policy picks the 
maximum possible frame resolution below the input size of the chosen DNN to 
maintain a stable network throughput. This policy is similar to AWStream (Zhang 
et  al. 2018a) (for the frame resolution) and offers optimal adaptation because the 
DNN accuracy is a monotonic function of the frame resolution (see Fig. 10).

We compare Jellyfish with three variants of the baseline by deploying the low-
est (B_L), middle (B_M), and highest (B_H) DNNs in terms of accuracy (also 
size). Similar to Sect. 7.2, we test around 18 experimental settings with a combi-
nation of {2, 4, 8} concurrent clients, {75, 100, 150}ms SLO and {15, 25} FPS. 
Along with a synthetic network trace, we also compare the performance on two 
real-world network traces: a WiFi network trace and a 4 G/LTE downlink band-
width trace (van der Hooft et al. 2016) downscaled by a factor of two to represent 
the uplink bandwidth  (Huang et  al. 2012). The WiFi trace has a higher median 
bandwidth value (53.1 vs. 22.8 Mbps) than the LTE trace, exhibiting high and 
low bandwidth environments. In addition, the WiFi trace has a much narrower 
spread (19.6 vs. 38.51 interquartile range) than the LTE trace, indicating that the 
LTE network is a highly dynamic and hostile environment. Fig. 14(bottom) shows 
the estimated and actual bandwidth values. Figure 14(top) shows the DNN selec-
tion decisions for one client under the two real-world network traces, indicating 
that Jellyfish adapts quickly to bandwidth changes.

Results and discussion Fig. 15 shows the performance of Jellyfish against the 
baselines under three different network traces. Jellyfish consistently has the over-
all miss rates below 1% for the synthetic and WiFi trace and below 1.5% for the 
LTE trace except for one setting (75ms SLO, 25 FPS, and 8 clients) where at 
least one client cannot be mapped to any DNN (explained in Sect. 7.2). Jellyfish 
achieves decent accuracy for settings with large SLOs and low aggregate request 
rates under the WiFi trace, on par with B_H. This is because the bandwidth values 
are generally high (median value 53.1Mbps) under WiFi, leaving a large compute 
time budget on the server. For B_L, the network is never a bottleneck because the 
smallest frame size, 128 × 128 at 25 FPS, needs only 2Mbps bandwidth. Besides, 
two B_L instances can support the aggregate request rate in all settings. Thus, the 
miss rates for B_L are negligible but at the cost of the lowest accuracy. B_H is 

Table 2   Performance of Jellyfish and B_M with heterogeneous clients

Network Trace #Clients Jellyfish B_M

Miss Rate (%) F1 Score Miss Rate (%) F1 Score

Synthetic 4 0.182 0.5737 15.510 0.7418
8 0.648 0.5459 35.006 0.7440

LTE 4 0.952 0.5810 11.782 0.7457
8 1.618 0.5456 31.936 0.7462

WiFi 4 0.622 0.6747 0.278 0.7577
8 0.825 0.6264 23.17 0.7579



1 3

Real-Time Systems	

the worst in terms of inference throughput and bandwidth requirement (26Mbps). 
Hence, B_H has the highest miss rate for almost all settings.

B_M has better performance than other baselines but fails to provide consist-
ency like Jellyfish does for all settings. B_M has high miss rates in the following 
two cases: (a) Low SLOs and low request rates: Clients need around 7Mbps to send 
frames at the desired size ( 354 × 354 ) and 15 FPS. Clients do not face any network 
bottleneck, especially under synthetic and WiFi traces, and thus can always send 
frames at the desired size. Yet, sending at the desired frame size results in significant 
network time (up to 60ms), leaving a very small compute time budget on the server, 
especially when the bandwidth drops below 10Mbps. Hence, the miss rates are 
around 40%, indicating the necessity of aligning the data and DNN adaptation deci-
sions. On the other hand, clients sending at 25 FPS need about 11Mbps, and there-
fore, clients would lower frame sizes (data adaptation) to maintain stable network 
throughput. Due to the data adaptation, the network time is significantly reduced, 
leaving enough compute time budget on the server for the inference. (b) High aggre-
gate request rates: The scheduler has to increase the batch size to support many 
clients (or their high aggregate frame rates), but at increased compute time, which 
hurts settings without sufficient SLOs. Therefore, B_M has high miss rates for 4 and 
8 clients with SLOs under 150ms.

Furthermore, as we consider the F1 score of only the processed requests, the 
accuracy of B_M and B_H is higher than Jellyfish in some settings but at the cost 
of extremely high miss rates. Note that the gap in accuracy between Jellyfish and 
baselines B_M and B_H decreases when the SLO increases as the scheduler tends to 
select larger DNNs.

Heterogeneous clients We also experiment with heterogeneous clients, i.e., clients 
with varying combinations of request rates (FPS) and SLOs in one setting. Table 2 
shows the performance of Jellyfish and B_M for heterogeneous clients under three 
different network traces. Under the LTE trace, the baseline B_M has a miss rate of 
11.78% for 4 clients and 31.94% for 8 clients. In contrast, Jellyfish has a miss rate 
of 0.95% for 4 clients and 1.62% for 8 clients, in line with the results in Fig. 15 for 
homogeneous clients. Similar results hold for the synthetic and WiFi network traces. 
Note that as we consider the F1 score of only the processed requests, the accuracy of 
B_M is higher than Jellyfish but at the cost of extremely high miss rates.

In summary, Jellyfish consistently outperforms baselines in terms of miss rates 
and maximizes the accuracy whenever a larger compute time budget is available 
(Q2).

7.4 � Performance of joint adaptation

In Sect. 7.3, we see that the miss rates are significantly higher for the baselines that 
do not perform DNN adaptation, even when using data adaptation. We now inves-
tigate the impact of joint adaptation, i.e., the combination of data and DNN adap-
tation. To this end, we enable or disable the two system adaptation components 
independently and analyze the impact of each combination on the overall Jellyfish 
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performance. For the data adaptation, we further consider three scenarios for which 
we provide modified implementations:

•	 No data adaptation (DAoff ) , i.e., simply streaming data from clients at a prede-
fined fixed size. Specifically, we choose the input size of the middle DNN, i.e., 
354 × 354 , which provides a good tradeoff between bandwidth requirement and 
accuracy. Here, the scheduler knows the data size and treats it as a constant dur-
ing DNN adaptation.

•	 Default data adaptation (DAbw) with typical network bandwidth awareness to 
maintain stable network throughput (Zhang et al. 2018a). Here, the current net-
work condition is considered but no knowledge about the DNN adaptation com-
ponent is provided. In this scenario, we have to statically allocate some percent-
age of the end-to-end SLO as a compute time budget for the DNN adaptation. 
For our experiments, we choose 50% and 75% heuristically. We cannot allocate 
25% of SLO as a compute time budget because no DNNs are feasible to execute 
for the 75ms and 100ms SLO settings.

•	 SLO-aware data adaptation (DAslo) that optimizes the data adaptation strategy 
to also consider the network time budget. Here, the data adaptation is aware that 
a part of the end-to-end SLO has been statically allocated for the DNN adapta-
tion. Hence, it attempts to deliver the data to the server in the remaining time to 
achieve low miss rates considering the network time budget in addition to the 
current network bandwidth.

Similar to Sect. 7.2, we use 18 experimental settings on synthetic network trace for 
performance comparison.

Results and discussion We show the results in Fig. 16. (a) For no data adaptation 
( DAoff ), the miss rates are extremely high in almost all settings as expected. (b) For 
default data adaptation ( DAbw ), the miss rates are lower than DAoff for settings with 
higher SLOs. However, compared to Jellyfish, DAbw still has higher miss rates and 
lower accuracy, especially for settings with lower SLOs (75ms and 100ms). Note 
that when the compute time budget is 50% of the SLO, no DNN is selected for the 

Fig. 16   The impact of the three data adaptation strategies on Jellyfish ’s performance under a synthetic 
network trace. The label DA means data adaptation, and CB

x% means x% of SLO allocated as a compute 
time budget. The x-axis is in log scale
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75ms SLO which results in a 100% miss rate. (c) For SLO-aware data adaptation 
( DAslo ), the miss rates are comparable to Jellyfish, but the accuracy is significantly 
lower for a compute time budget of 50% of the end-to-end SLO ( CB50% ). The accu-
racy of DAslo is on par with Jellyfish for a compute time budget of 75% of the SLO 
( CB75% ). In the case of DAslo and CB75% , the frames are streamed at a lower resolu-
tion (due to a low network time budget) and upscaled on the server for serving with 
bigger DNNs. While the task we consider in the experiments (vehicle detection) is 
not obviously sensitive to quality degradation from frame upscaling, that behaviour 
may not hold for other tasks (e.g., semantic segmentation), DNN architectures, and 
data content  (Dai et  al. 2016). Furthermore, the accuracy depends on the manual 
selection of a static budget allocation (50% or 75%) between data and DNN adapta-
tion, and the optimal value can be hard to decide in practice. Jellyfish automatically 
and dynamically allocates the time budget between data and DNN adaptation.

In summary, joint adaptation is crucial for achieving low miss rates with optimal 
accuracy—Jellyfish’s dynamic allocation of time budget between data and DNN 
adaptation and alignment of adaptation decisions allow for a consistently high 
performance without manual system configurations.

7.5 � Large‑scale setup

We also evaluate Jellyfish on a large-scale distributed cloud setup. Specifically, we 
run the dispatcher on an AWS compute instance c5.9xlarge, 8 workers on 8 
g4dn.2xlarge instances equipped with T4 NVIDIA GPUs and 8 t3.2xlarge 
instances to emulate up to 32 clients. Here, we test Jellyfish with varying numbers 
of clients for {100, 150}ms SLOs and 15 FPS on the LTE trace. We choose an FPS 
of 15 to support a large number of clients without introducing a throughput bottle-
neck on the server and to offer enough leeway for DNN adaptation. The latency pro-
file patterns remain proportional to the one in Fig. 10. We use only the smallest ten 
DNNs since larger DNNs have much lower throughput, making them inefficient in 
this setup. Note that T4 GPUs have a low power limit of 70W. Therefore, even after 
fixing the clock values, power throttling leads to rather unstable inference timings, 
which can negatively affect the performance of Jellyfish.

Figure  17 shows that the miss rates are less than 1.73% for an SLO of 150ms 
and 3% for 100ms. For 100ms SLO and 32 clients, the scheduler selects relatively 
smaller DNNs than 24 clients to support the aggregate request rate (480 FPS). The 

Fig. 17   The miss rate on 8 GPUs for varying numbers of clients operating at 15 FPS with the dynamic 
LTE trace
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scheduler may then assign many clients to the smaller DNNs. As mentioned in 
Sect. 7.2, many clients assigned to the same DNN might distort the uniformity of 
the request arrival pattern and thus lead to increased request misses when the infer-
ence timings are unstable. However, the miss rate improves with the increase of the 
SLO (e.g., 150ms), due to increased compute time budget that can mask the unsta-
ble timings. We observe no particular trend in the miss rate when the number of 
clients increases as the miss rate depends on the complex dynamics of client charac-
teristics and DNN performance profiles. Overall, Jellyfish achieves miss rates within 
the acceptable range ( 1 − 3% ), even on a large-scale setup (Q3).

7.6 � Scheduler performance

We evaluate the Jellyfish scheduler performance through simulations, comparing 
it with the optimal MILP algorithm. We run the algorithms with multiple settings 
spanning {2, 4, 8, 16} GPUs and the number of clients with a factor of {4, 6, 8, 10} 
times the number of GPUs. Each client randomly draws its request rate from {10, 
15, 25} and SLO from {75, 100, 150}ms and its bandwidth is chosen uniformly at 
random from the interval [7.5, 50) Mbps. We use the same DNN profiles as depicted 
in Fig. 10. We run around 100 problem instances for each setting. The solution qual-
ity of each algorithm is measured by the accuracy objective defined in Eq. 2. We 
then use the approximation ratio between our algorithm and the MILP algorithm as 
a comparative metric.

Approximation ratio Fig.  18a shows the mean approximation ratio for 2 and 4 
GPUs. The MILP algorithm could not return enough optimal solutions for settings 
with {8, 16} GPUs and 40 clients on 4 GPUs, even after specifying the time limit 
of 30 minutes for each problem instance. It can be observed that our scheduling 
algorithm is near-optimal, with an approximation ratio ranging from 0.966 to 0.996.

(a) Approximation ratio (mean) (b) Execution time in log scale

Fig. 18   Performance of Jellyfish scheduler for varying #GPUs and #clients. Here, the #clients is a prod-
uct of Clients Scale Factor (x-axis) and #GPUs
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Execution time As depicted in Fig.  18b, our naive Python implementation of the 
Jellyfish scheduler has a sub-second execution time for up to 8 GPUs and clients scale 
factor of 6. With the increase of the GPUs and the clients scale factor, the execution 
time increases almost linearly. Overall, it is practical to run our scheduler at a high fre-
quency for handling high network dynamics in typical edge scenarios.

7.7 � DNN prefetching performance

We also analyze the effectiveness of the DNN prefetching strategy. We consider the 
same settings under the two real-world network traces, where DNNs must be adapted 
more often to handle frequently changing bandwidth. In this case, the DNN hit ratio is 
around 92.37% when five DNNs (out of 16) and 83.61% when only three DNNs are 
prefetched at a time. On our setup, such a hit ratio translates to a maximum gain of 3% 
in processing requests precisely with the newly selected DNN. The gain is not high due 
to the minimal cost of moving DNNs on our GPU setup (150-200ms). However, we 
anticipate the gain to be substantial for large state-of-the-art DNNs. The high hit ratio 
confirms the effectiveness of the nearest-neighbor prefetching and our DNN update 
method.

8 � Preliminary evaluation with dynamic DNNs

After demonstrating the effectiveness of Jellyfish with the bag-of-models technique, 
we now evaluate dynamic DNNs in Jellyfish. We implement a dynamic DNN for 
the real-world object detection task using a transformer-based vision model called 
DETR (Carion et al. 2020). The architecture of the DETR model consists of two parts, 
the backbone part (e.g., ResNet50, a convolutional neural network) extracting features 
and the transformer part (as object detection head) predicting bounding boxes and 
classes from the features extracted by the backbone.

8.1 � Evaluation setups

DNN variants In our experiment, we replace the static ResNet50 backbone part of 
the DETR model with the dynamic OFA-ResNet50 (once-for-all architecture) (Cai 
et al. 2020), which allows us to switch between different sub-networks of the OFA-
ResNet50 dynamically on-the-fly. Similar to Sect. 7, we consider 16 DNN variants 
or sub-networks in OFA-ResNet50, supporting 16 different input (data) sizes (in 
both spatial dimensions) from 128 to 608 with a step size of 32. We then add one 
transformer block as an object detection head to all 16 OFA-ResNet50 sub-networks 
(backbones), generating 16 OFA-ResNet50-DETR variants. The latency and 
throughput profiles of every OFA-ResNet50-DETR variant are similar to the profiles 
of YOLOv4 DNNs (see Sect. 7.1). That means the latency of a smaller DNN size 
(smaller input size) is lower than that of a bigger DNN size. To profile the latency 
of a DNN variant in the dynamic DNN for a particular batch size, we consider the 
worst-case execution latency which is when all the requests in the batch exit from 
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the final exit branch. In addition, we assume that the accuracy characteristics of our 
16 OFA-ResNet50-DETR variants are similar to that of YOLOv4 DNNs, meaning 
that the accuracy increases monotonically with the DNN input size. Note that, as 
benchmarked in  (Sreedhar et  al. 2022; Samplawski and Marlin 2021), the DETR 
model’s backbone part is relatively more expensive in computation (60%-90% of 
the total execution time) than the transformer part (10%-40% of the total execution 
time) depending on the input size and batch size used. Hence, we do not consider a 
dynamic architecture for the transformer block in this work.

We compare the performance of dynamic DNN variants with their static 
counterparts. The static DNN variants are equivalent to the dynamic DNN variants 
(sub-networks) in terms of model architecture (backbone and transformer block) and 
parameters, except that they have only one main exit branch (transformer block). 
The size of the parameters for each of the 16 static DNN variants ranges in [132.66, 
215.94]  MB, with a median value of 167.68  MB. In comparison, the size of the 
parameters of the dynamic DNN (embedding 16 or more sub-networks) is only 
262.70 MB, which is 10 times lower than the total size of the 16 static DNN variants 
and just 56.6% larger than the median value for static DNN variants. Even if we 
add an early exit branch to the dynamic DNN variant, the size of the parameters is 
only 287.01 MB, making the dynamic DNN a highly parameter-efficient collection 
of DNN variants. Furthermore, the execution latencies of dynamic DNN variants 
are nearly identical to that of their static counterparts. The median value of the 
difference between the execution latencies of dynamic DNN variants and static 
DNN variants across all the batch sizes is just 0.817 ms with an interquartile range 
of 1.32 ms. For the execution latencies of dynamic DNN variants with the early-exit 
branches, see Sect. 8.3.

Implementation and setup We integrate our OFA-ResNet50-DETR dynamic 
DNN into Jellyfish and perform preliminary experiments. Similar to Jellyfish, we 
implement the components of our dynamic DNN in Python and PyTorch framework 
for DNN execution, as DETR  (Carion et  al. 2020) and OFA  (Cai et  al. 2020) 
implementations are also publicly available in the same frameworks. We use the 
same hardware and software setups for the server and clients as described in Sect. 6, 
except that we use only one GPU on the server because we are primarily interested 
in the DNN switching cost and the early-exit performance of DNNs selected on a 
GPU and to avoid the influence of DNN selection decisions made across GPUs by 
the Jellyfish scheduler in the case of multi-GPU setup. In addition, we use one traffic 
video from the video dataset (see Sect.  7.1) and replay video frames at different 
frame rates as the client requests. As we primarily focus on the execution efficiency 
of the dynamic DNN variants, we do not train the OFA-ResNet50-DETR variants 
and consider it as future work.

8.2 � Impact on DNN adaptation

To evaluate the performance of dynamic DNNs with respect to adaptation, we test 
different experimental settings with {1, 2, 4} clients, SLOs from the set of {50, 
100, 150} milliseconds  (ms), request rates (frames per second) from the set of 
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{15, 30} FPS. To emulate dynamic network conditions, we use the two real-world 
network traces (i.e., LTE and WiFi) as mentioned in Sect. 7.3. Finally, we disable 
the DNN caching mechanism of Jellyfish.

Evaluation metric It is non-trivial to isolate and measure the impact of DNN 
adaptation through main metrics (i.e., the accuracy and miss rates, as defined in 
Sect. 7.1) because of the interplay between various factors that affect these metrics. 
For example, a slight difference in the latency profiles between static and dynamic 
DNNs can lead to the selection of different DNN variants for execution, affecting 
the accuracy and/or end-to-end latency of clients. Hence, we define a specific metric 
called mismatch count. The mismatch count metric indicates the number of newly 
arrived inference requests (or frames) executed using the old DNN variant due to 
the delay in the DNN adaptation process. Such a mismatch may negatively affect the 
miss rate when new frames are executed with the old but bigger DNN variant, and it 
may degrade accuracy when new frames are executed with the old but smaller DNN 
variant.

Figure 19 shows the number of mismatches observed when static DNNs are used. 
We do not plot numbers for the dynamic DNNs, as all values are almost always 
zero. In the case of static DNNs, the larger SLOs have a higher mismatch count 
because they provide more room for DNN adaptation. The mismatch count is further 
exacerbated when the aggregate request rate increases due to the increase in the 
number of clients or their inference request rates. Furthermore, the mismatch count 
is higher under the LTE trace because of the low bandwidth values (median value 
14.07 Mbps) and comparatively large variations.

Fig. 19   Number of mismatches that occur when the newly arrived frames from clients are executed with 
the old DNN variant due to the delay in switching to the new active DNN variant. Here, we see that static 
DNN variants can lead to a significant number of mismatches, whereas dynamic DNN has zero mis-
matches in almost all cases (thus skipped in the figure)
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On the other hand, the mismatch count for dynamic DNNs is zero for almost all 
settings. When the mismatch count is not zero, the value is small and negligible 
compared to that with the static DNNs. For example, for the worst-case setting with 
4 clients, 150  ms SLO and 30  FPS under the LTE trace, the mismatch count for 
dynamic DNNs is only 64, whereas the mismatch count for static DNNs is 953. The 
small mismatch count in dynamic DNNs can be attributed to the way Jellyfish han-
dles pending requests in the queue before adapting it to the new active DNN variant. 
Specifically, Jellyfish waits for sufficient requests to arrive (to fill the batch) before it 
can drain the pending requests with the old DNN variant, leading some new requests 
to be executed with the old DNN variant.

In summary, the negligible mismatch count shows that the dynamic DNN quickly 
adapts to the DNN variant desired by the scheduler of inference serving systems and 
removes the need for DNN caching.

8.3 � Early‑exit performance

We add a small transformer block (an object detection head) with only three encoder 
and decoder layers as an exit branch to the dynamic OFA-ResNet50-DETR model 
(see Fig. 9). This exit branch is inserted after the second ResNet block of the OFA-
ResNet50-DETR DNN and is reused for all 16 DNN variants of the dynamic DNN. 
To simulate different early-exit scenarios, we assign exit probabilities to the first 
exit branch of 16 DNN variants uniformly from the synthetic set {0.25, 0.30, 0.35, 
0.40}, indicating the percentage of requests exiting from that branch. The smaller 
(bigger) DNN variants have lower (higher) exit probabilities.

We first evaluate the execution latency of four DNN variants sampled uniformly 
from the OFA-ResNet50-DETR model. The exit probabilities of these four DNN 
variants at the first exit branch are 0.25, 0.30, 0.35, 0.40, respectively. We run each 
DNN variant for eight different batch sizes and for 1K iterations per batch size.

Fig. 20   The performance of DNN variants with early-exit technique compared to the no early-exit DNN 
variants. We sample four DNN variants uniformly from the set of 16 DNN variants
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The violin plot in Fig.  20 shows the performance of four sampled DNN vari-
ants with and without the early-exit technique. DNN variants without the early-exit 
branch have steady execution latency and, thus, have only one density area centred 
around a very narrow range. On the other hand, DNN variants with the early-exit 
branch have two density areas displaying the latency timings of requests exiting at 
two exit branches. The median latency is higher for smaller DNNs or smaller batch 
sizes because of the extra time required to execute the additional exit branch. For 
bigger DNNs and larger batch sizes, the median execution latency of the early-exit 
DNN variant is lower than that without early-exit. This is because bigger DNNs 
have higher exit probabilities, and thus more requests exit at the first branch, causing 
a significant reduction in the overall batch inference time. Further, even under low 
exit probabilities (such as 0.30 for DNN index 5), the reductions are noteworthy at 
large batch sizes. This demonstrates a potential for a substantial reduction in batch 
inference time even when only a few requests exit (low exit probability) with large 
batch sizes, thereby amortizing the overall inference serving latency.

We now evaluate the performance by incorporating early-exit DNN variants in 
Jellyfish. We test different experimental settings with varying numbers of clients, 
SLOs, and request rates under the WiFi trace. We choose WiFi trace as it has higher 
bandwidth (median value 53.1Mbps) than the LTE one, allowing the scheduler to 
select bigger DNN variants that can benefit from the early-exit performance.

Figure 21 shows the end-to-end latency per request with and without the early-
exit branch. In many settings, the median end-to-end latency in the case of early-exit 
DNN variants is lower than that of the case without the early-exit branch. However, 
we observe that this does not always indicate that the early-exit technique offers low 
end-to-end latency. This is because the 16 DNN variants have different latency pro-
files with and without the early-exit branch. The early-exit DNN variants have higher 
latency profile values due to the additional time spent at the first early-exit branch. 
As a result, for the early-exit case, the scheduler may select smaller DNN variants 
leading to lower execution latency. Hence, the selection of smaller DNN variants 

Fig. 21   End-to-end latency observed when DNN variants are deployed with and without early-exit tech-
nique for varying SLOs, request rates (FPS) and numbers of clients under a WiFi network trace
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can also potentially lower the median value, making it hard to isolate the actual rea-
son for the improvement. We leave the detailed analysis to future exploration.

9 � Further discussion and limitations

9.1 � Jellyfish

This section discusses the limitations and directions for future work to improve 
Jellyfish further.

Request rate adaptation Similar to Chameleon  (Jiang et  al. 2018) and 
DeepDecision (Ran et al. 2018), Jellyfish does not adapt the request (frame) rate and 
we consider it as future work. The plan is to decouple the request rate adaptation 
decision from the server-side scheduling and leave the decision up to the client. 
Such an approach may help with Jellyfish scalability.

Predictability Generally, we assume that DNN inference latency is predictable 
and invariably remains stable. Yet, in practice, especially on commodity hardware 
and software, it is hard to maintain stable performance without having a detailed 
understanding of the system’s internals. We expect the service providers to tune the 
system in favor of stability than speed.

Latency budget estimation Our latency (compute) budget estimation currently 
depends on predicting accurately the client’s bandwidth and the data size of 
the video frames. With image encoding such as JPEG and PNG, the compressed 
size depends on the changing content of the image, which affects the estimation 
of network time. We plan to explore the more advanced bandwidth estimation 
techniques and frame/video compression scheme with a constant compression ratio.

Accuracy optimization Jellyfish aims to optimize for accuracy by selecting the 
best possible DNN variants from the collection (bag) of diverse DNNs for the 
current system conditions. Therefore, we expect that the effective accuracy achieved 
by the clients (assuming they are successfully mapped to DNNs) will be bounded. 
The smallest DNN and the largest DNN in the collection determine the minimum 
and maximum accuracy values. The degradation of accuracy depends on the 
distribution (spread) of accuracy values (profiles) among the DNN models in the 
collection. When the minimum accuracy (determined by the smallest DNN model) 
is not acceptable to the broad range of users, the system designer can attempt to 
optimize the serving by improving the minimum accuracy and narrowing down 
the spread in the accuracy by choosing the collection of DNN variants prudently. 
One can select the collection of fine-grained DNN models - easily achievable using 
dynamic DNNs - to increase the space of DNN models and narrow the accuracy 
spread.

Accuracy constraint Jellyfish can easily support the addition of constraints 
on the desired minimum accuracy per client. Our scheduler can be extended to 
support such accuracy constraints by setting the latency budgets of clients to zero 
for DNNs whose accuracy is lower than the desired value. However, clients may 
not be mapped to any DNN variant during runtime if they provide a greater desired 
value on the accuracy constraint. When clients cannot be mapped to any DNN 
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due to either accuracy constraints or stricter latency or extremely low bandwidth 
conditions, we must implement a component on the client side to execute requests 
locally, provided that clients have sufficient compute resources for inference with 
optimized/compressed DNNs.

Client adapter As mentioned in Sect.  3.2, Jellyfish requires client support to 
facilitate data adaptation, bandwidth estimation, and metadata piggybacking, which 
is typical for adaptive-video-analytics systems. Hence, providing client-side adapters 
or skeleton code for multiple languages will help ease the application development.

Unreliable communication network In this paper, we do not explicitly tackle 
the unreliability of the communication network. However, the client and server 
communication in our current implementation is handled using gRPC. We, therefore, 
rely on the gRPC-TCP’s reliability feature to manage message loss/drop conditions. 
There can be delays in message delivery which can delay the data adaptation 
process with the correct size. Such delays can then lead to a mismatch between the 
data size and the DNN size on the server, subsequently impacting the application 
performance. However, we anticipate that these delays will be considered when 
estimating the bandwidth, and therefore the Jellyfish scheduler will handle such 
conditions in the next scheduling round. Additionally, we piggyback the metadata 
(e.g., data/input size) on every response to the client. As a result, clients can recover 
from unreliable conditions as soon as the connection stabilizes.

9.2 � Dynamic DNNs

In this section, we discuss the limitations and future work of our proposal on 
leveraging dynamic DNNs to avoid DNN switching costs and improve the 
performance of batched inference.

Controlled experiments We evaluated our proposal for combining the network 
pruning and early-exit techniques in the Jellyfish framework. However, as discussed 
in the evaluation section, it is hard to isolate the actual reason for the performance 
improvement because multiple factors in Jellyfish affect the final outcome. 
Therefore, it is worth evaluating our proposal in other serving systems where more 
controlled experiments can be conducted more conveniently.

Joint DNN training As our preliminary evaluation is focused primarily on the 
execution efficiency of the proposed approach, we did not train all the DNN variants 
and their early-exit branches. It is important to study the effectiveness of the training 
strategy proposed in Sect. 5.2. Such a study will highlight the challenges, complexity 
and cost involved in training jointly all the variants. Such a study will also help us in 
understanding the accuracy and exit probabilities achieved at each exit branch.

Early-exit decision making As discussed in Sect. 5.3, we evaluated our learning-
based module for exit decision-making exclusively on one DNN variant with two 
exit branches, where 30.94% of requests exit at the first exit branch with a minimal 
drop in accuracy. It is important to study how well our learning-based module 
performs across all DNN variants.
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Early-exit APIs Widely used deep learning frameworks like PyTorch and Tensor-
Flow do not provide any APIs for the early-exit implementation and their batched 
inference execution. Instead, the current APIs execute all requests through the entire 
network and exit them simultaneously. Therefore, it is necessary to explore the API 
specifications needed for early-exit networks so that any arbitrary requests can exit 
in the middle of the network with low performance overhead.

Accuracy gains through enlargement On one hand, the early-exit technique 
offers accelerated execution of batched inference. On the other hand, it allows the 
remaining requests in the batch to use more compute resources that could then be 
used to enlarge the remaining portion of the DNN variant in an effort to increase 
accuracy. Therefore, it is worth investigating the gains in accuracy achieved through 
the enlargement of the portion of the DNN.

10 � Related Work

Adaptive video analytics systems Recent works such as VideoStorm  (Zhang 
et  al. 2017), AWStream  (Zhang et  al. 2018a), Chameleon  (Jiang et  al. 2018), 
DeepDecision (Ran et al. 2018), JCAB (Wang et al. 2020), DDS (Du et al. 2020), 
and SPINN (Laskaridis et al. 2020a) have proposed adaptive solutions for networked 
video analytics. Their main goal is to schedule bandwidth efficiently or save energy 
by means of trading accuracy for resource efficiency. However, meeting latency 
SLOs in an end-to-end fashion has not been the main goal or even considered. Data 
adaptation is applied in DeepDecision and JCAB, with theoretical frameworks for 
adapting input video configurations (such as frame resolution and rate). Although 
JCAB considers a multi-client scenario (despite simulation-based evaluation), none 
of them consider the multi-client, multi-GPU serving scenario for a holistic DNN 
adaptation. The problem of resource allocation and workload partitioning between 
multiple clients (smart cameras) and an edge cluster in video surveillance systems 
has been addressed by Distream  (Zeng et  al. 2020). Unlike Jellyfish, however, 
Distream does not account for variable edge network conditions and millisecond-
level SLOs, thus limiting its applicability for the highly dynamic scenarios we 
consider in this paper.

Inference serving systems Clipper (Crankshaw et al. 2017) provides an easy-to-use 
abstraction layer for low-level deep learning frameworks. Nexus (Shen et al. 2019) 
aims to optimize serving throughput without SLO violations. Clockwork (Gujarati 
et  al. 2020) leverages the predictable performance of the DNNs, considers the 
SLO guarantees on the server, and maps requests to the desired model, but does 
not utilize DNN adaptation. Inferline  (Crankshaw et  al. 2020), Llama  (Romero 
et al. 2021b), and FA2 (Razavi et al. 2022) optimize the serving of complex DNN 
pipelines. INFaas (Romero et al. 2021a) automates the hardware and model-variant 
selection and deployment through managed services. Model-Switching  (Zhang 
et  al. 2020a) proposes to scale DNNs (up and down) instead of scaling resources 
in the case of fluctuating workload. None of these cloud-based solutions consider 
the impact of the dynamic edge network on the end-to-end latency. These serving 
systems do not consider the client conditions and perform client data adaptation to 
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reduce network transmission time and effectively increase the compute time budget 
on the server-side. Further, since many of these serving systems are designed for 
different objectives (e.g., resource optimization), it is non-trivial to incorporate 
network variation, data/DNN adaptation dependencies, and collective adaptation in 
them without fundamental changes.

While enterprise-grade serving systems such as TensorFlow Serving  (Olston 
et  al. 2017), Torch Serve  (Pytorch 2021), and Triton Inference Server  (NVIDIA 
2021) support best-effort inference batching, they do not have latency guarantees 
as a first-class service feature, let alone considering client network conditions. 
Integrating our scheduler logic into these systems is an interesting direction for 
future work. Jellyfish bridges the gap between adaptive video analytics systems and 
inference serving systems.

Joint adaptation Recent works have also argued for joint data and DNN 
adaptation. However, they either focus on a single-client setup (Nigade et al. 2021) 
or optimize resources with relatively lenient latency constraints (i.e., 1–5s)  (Jiang 
et  al. 2021). In contrast, Jellyfish maximizes inference accuracy with millisecond-
level latency SLO targets given a highly dynamic network.

Dynamic DNNs Recently, neural architecture search (NAS) based methods 
such as ProxylessNAS (Cai et al. 2019), MnasNet (Tan et al. 2019), and OFA (Cai 
et  al. 2020) have been proposed to generate dynamic (or static) sub-networks 
by searching through the large architecture space. These methods complement 
our idea of using multiple DNN variants (sub-networks) for DNN adaptation in 
inference serving systems, provided they maintain efficient parameter sharing 
and architecture switching between the sub-networks. While previous works like 
BranchyNet (Teerapittayanon et al. 2016) have focused on improving computational 
efficiency in DNNs through early-exit techniques, they are limited to tasks such as 
classification (Teerapittayanon et al. 2016; Laskaridis et al. 2020b), segmentation (Li 
et al. 2017), or text generation  (Schwartz et al. 2020). Our design of the dynamic 
DNN extends the early-exit technique to the object detection task by utilizing a 
lightweight transformer-based exit branch. Additionally, the performance of batched 
inference in the context of early-exit networks has not been extensively studied, 
except for a few recent exceptions like DVABatch (Cui et al. 2022), PAME (Zhang 
et al. 2022), and Fluid Batching (Kouris et al. 2022). So far, not much work has been 
done on combining the network pruning and early-exit techniques. Recently, Görmez 
and Koyuncu (2022) evaluated pruning methods for early-exit networks to generate 
a smaller yet static early-exit network. To the best of our knowledge, the idea of 
combining these two techniques within a serving system to achieve smooth DNN 
adaptation with efficient batched inference is novel. Moreover, using transformer-
based vision models opens up the possibility of applying this combination to the 
object detection task.
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11 � Conclusion

Jellyfish is an edge-centric DL inference serving system that provides soft guarantees 
for end-to-end latency SLOs specified over the variable network transmission 
and DNN inference time. Jellyfish employs efficient algorithms for client-DNN 
mapping and DNN selection, enabling collective system adaptation by aligning data 
and DNN adaptation decisions and coordinating adaptation decisions for multiple 
clients. Our evaluation based on a system prototype with real inference tasks and 
real-world network traces confirms that Jellyfish consistently achieves extremely 
low latency SLO violations while maintaining high accuracy. We also present ideas 
to design and integrate dynamic DNNs in Jellyfish to accommodate more efficient 
DNN switching and batched execution. Our preliminary evaluation demonstrates the 
potential of integrating dynamic DNNs to further enhance Jellyfish.
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