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Abstract—The world is driven by the Internet and there is
no doubt about its importance in our daily life. However, the
Internet has rarely been upgraded since its advent, although
the ISO OSI model has already provided the required flexibility.
With innovations being blocked, the Internet is suffering from a
high-degree of ossification (e.g., the slow progress of IPv6 update),
leading to suboptimal efficiency for emerging applications as well
as enlarged maintenance cost.

In this paper, we present VirtualStack, which aims at bringing
back the interchangeability of network layers. VirtualStack is
based on the idea of protocol virtualization, where the most
suitable protocol stack can be dynamically composed and applied
on the fly according to the characteristics of both the application
and the physical link. Through a comprehensive study, we show
that many existing but not widely deployed protocols outperform
the omnipresent TCP under various link technologies and net-
work conditions. This provides the necessary insight for dynamic
composition of the network protocol stack. We further evaluate
VirtualStack under a typical Internet setting with multiple hops
under different conditions. The experimental results confirm the
benefits as well as the potential of VirtualStack.

Index Terms—Protocol virtualization, network virtualization,
software-defined networking, network ossification.

I. INTRODUCTION

The Internet has evolved from the 1970s as e-mail network to
an important part of our daily life and business today. Research
fields and industry trends like Industry 4.0 and the Internet
of Things (IoT) keep reinforcing the importance of a well
working world wide network. In particular, IoT will be driving
us to more mobile and wireless connections than nowadays. As
shown by the Cisco Visual Networking Index [1], mobile traffic
grew by 52% in Western Europe in the year 2016 and this ratio
is projected to increase further. While we were facing 7EB
mobile traffic per month in the year 2016, we will probably
have to deal with an amount of 49EB in the year 2021.

Unfortunately, this upcoming challenge has not been tackled
in an optimized way, resulting in poor cost effectiveness. This
is mainly due to the fact that the current Internet is suffering
from a high degree of ossification towards TCP/IP. TCP was
invented for reliable communication in wired networks without
features for real-time communication and encryption, and it
does not outbid wireless capabilities. However, as mentioned
before, most Internet connections are not simply through wired
networks from the link-layer perspective. Instead, the majority
of the connections are based on a mixture of different wired
and wireless technologies. Since every technology has its own

strengths and weaknesses, it is difficult, if not impossible, to
address all the physical- and link-layer specifications using
one single high-level protocol. This makes the so believed
“one-size-fits-all” solution, i.e., TCP/IP, suboptimal in terms of
performance in many situations, where cross-layer optimiza-
tions are neither considered nor widely adopted.

To address these issues, we present in this paper the following
four major contributions: (1) We discuss the vicious cycle in
protocol deployment and its important role in the context
of Internet ossification. We show in our argumentation how
network protocol virtualization could be the key technology for
solving this issue, with which we can more flexibly leverage
the idea of interchangeable protocol layer as expected in
the OSI model. (2) We present a system called VirtualStack
for network protocol virtualization, which enables cross-layer
optimizations on a hop-by-hop base. We describe in detail
its design and implementation for both end-devices and in-
network middleboxes. (3) We measure the performance of
a large variety of network protocols together with three
most significant physical- and link-layer technologies, i.e.,
LTE, WiFi, and Ethernet, under different link conditions. We
observe that TCP is not the best choice for all considered
scenarios and we explore the best performing protocol for
each of the scenarios. Based on the measurement results we
discuss suitable protocol alternatives considering the feature
combinations of link- and transport-layer protocols in harmony
with application needs. Furthermore, we identify the most
influencing factors on network protocol performance based
on our measurement experience. (4) We evaluate the benefit
of applying end-to-end and in-network protocol virtualization
compared to the usual TCP-based solution. To this end, we
present a well understandable real-world scenario and discuss
our measurements in its context to support our argumentation.
The results clearly show that cross-layer optimizations on a
hop-by-hop base at technology boundaries are beneficial.

The rest of the paper is structured as follows: Section II
presents the necessary background information along with
contribution (1). In Section III we present contribution (2),
i.e., our system design of VirtualStack, which realizes network
protocol virtualization in currently available systems. Section IV
presents and discusses our evaluation results, namely contribu-
tion (3) and (4). Section V presents related work and Section VI
concludes the paper and presents some ideas for future work.
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II. BACKGROUND AND MOTIVATION

The OSI model is considered as the primary architectural
model for network communications. With the proposed lay-
ered architecture, the OSI model specifies particular network
functions on each of the layers, aiming at providing adaptable
service experience. However, the Internet evolved in a different
way, resulting in a high degree of ossification due to the fact
that network innovations are rarely adopted.

The situation is caused by multiple factors that complicate
each other. First, network protocols are usually implemented as
part of the operating system kernel and the kernel-level code
has a huge influence on the stability and security of the overall
operating system. However, operating systems vendors always
stay cautious about taking the risk to introduce new protocols
which are not popular. As a result, emerging applications may
want to use some application-specific protocol optimized for
better performance but the protocol cannot be made widely
available. Second, network applications are usually developed
without knowing much detail about the physical network and
thus, developers lean to have the secure choice of TCP since it
is well known as an always-working solution. This leads to the
fact that new protocols will rarely be used by applications even
if they may be partially available. This dilemma eventually leads
to a vicious cycle and there is no easy way out. Finally, ISPs
usually rely on middleboxes to achieve high network efficiency,
which are unfortunately only optimized for TCP traffic and may
block traffic using new protocols [15]. Recently, QUIC [18]
was proposed, which bypasses this restrictions by sitting on the
application layer based on the widely available UDP protocol.
However, QUIC is customized for HTTP and currently it is
not generally available for none Google applications.

The secure choice of TCP in application development
can also lead to suboptimal network performance in many
circumstances. Being agnostic to the physical links, TCP may
not always perform well for all different physical channels
including LTE, WiFi, or Ethernet due to their specific channel
properties. One the one hand, workarounds based on inter-
mediate proxies (e.g., Indirect-TCP [4]) have been proposed
conforming to the layer separation principle, but they cannot be
generalized to different channels. On the other hand, cross-layer
optimizations have been shown to be helpful [24], but they are
usually highly customized to certain network conditions and
lack the required flexibility due to the coupled network layers.

We argue that the culprit of the above situations is the fact
that application developers are responsible for choosing network
protocols without having enough knowledge of the deployment
environment, leading to the de facto (yet undesirable) tight
coupling between the application and the protocol stack
following the always-working choice of TCP. Therefore, our
goal in this paper is to explore how we can take away
this responsibility from application developers while enabling
flexible selection of protocols in the network stack.

Our proposal is network protocol virtualization. The ba-
sic idea is to introduce an intermediate layer between the
application and the network interface, on which network
protocols can be virtualized and the most appropriate protocol

stack can be dynamically composed and adaptively adjusted
based on real-time system states. In addition to addressing the
aforementioned two problems, the virtualization concept will
make significant impacts on the following aspects. (1) Full
end-to-end network performance optimizations will become
possible in the context of software defined networking (SDN).
By enabling the communication between the end-device and
the SDN controller through a predefined control protocol [13],
we are able to extend network optimization to the dimension of
protocol selection, complementing traffic steering, based on a
(semi-)global view of the network. (2) Additional network
functionality such as encryption can be easily introduced
as extra layers below the application layer, which can be
made widely available for all the applications. (3) A broad
deployment of protocol virtualization in SDN environments
will contribute to a higher impact of ISP’s incentives. Since
ISPs have an integral interest in running their networks as
efficient as possible, we shall see more optimized protocols
for specific physical network components.

III. SYSTEM DESIGN

Targeting the aforementioned issues in current network
protocol stack, we propose VirtualStack (VS), following the
idea of network protocol virtualization. In this section, we
present its design in detail.

A. Design Overview
To realize protocol virtualization, an intermediate layer

between application and the networking hardware is needed.
This layer can be implemented in user- or kernel-space, whereby
both choices have their own advantages and disadvantage. VS
is designed to operate in user-space and this design choice is
two-fold: We want to maximally leverage the broadly deployed
kernel-space protocols with performance retained. On the other
hand, we want to incorporate cutting-edge technologies for
novel protocol concepts to demonstrate the extensibility of
the protocol virtualization approach. Naturally, this leads to a
modular design, which also enables rapid prototyping of new
protocols. Furthermore, implementing in user-space is easier
and faster, making it more attractive for academic use.

The overall architecture of VS is depicted in Figure 1.
VS consists of three basic modules: analysis, execution, and
management, and exposes three interfaces: payload source to
the application which provides an abstraction for the available
strategies to intercept the traffic of applications, packet sink to
the physical network interface which provides an abstraction for
the actual networking interfaces, and a management interface
to the network controller in case of centralized management
such as in SDN. We elaborate them separately in the following.

B. Interfaces
Payload source. The payload source provides abstractions for
the available strategies for intercepting the traffic from upper-
layer applications. To support legacy applications we design
and develop two alternatives for this purpose: (1) utilizing
a virtual network interface similar to VPN connections, and
(2) using library injection or modified shared libraries (e.g., on
a specialized Android system) to change the socket behavior
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Fig. 1: An overview of VirtualStack’s architecture.

to communicate with VS instead of the kernel. For newly
developed applications, it’s worth to use a state-of-the-art
interface over the traditional socket API in order to pass the
application needs to VS. Since VS always works on a per packet
basis, the provided API to the application has to translate from
streams into packets. We will discuss this in Section V.
Packet sink. The packet sink provides abstractions for the
actual networking interfaces and it is used by VS to exchange
packets with the physical network. In addition, the packet sink
provides communication related services. The most important
one is coordination with the VS running at the communication
partner either by embedding management packets into the
stream or by establishing an addition connection. Note that
the introduced overhead is rather small, since the management
communication is only needed at connection establishments
when VS is not controlled by a SDN controller. Other services
of the packet sink include gathering of link layer information
and automatic hole punching through firewalls as needed for
connections between two host running VS.
Management interface. VS features a management interface
that is used to communicate with an external controller, e.g.,
when running VS in SDN environments. This management
interface enables the installation of rules for choosing ap-
propriate network protocols in a given environment by an
external controller. Besides, the management interface provides
functionality for state monitoring and sharing to the controller
for well informed optimization. The external controller is able
to communicate with VS through the management interface
via a well defined control protocol [13].

C. System Modules
Analysis module. The analysis module takes application traffic
as input and assigns it to respective network flows. A network
flow represents a connection between the applications. Each
network flow is defined by a 5-tuple (sending port, receiving
port, sending IP address, receiving IP address, type of the

originally used transport protocol). The 5-tuple is either passed
from the programming interface of the application or directly
extracted from the packet headers. Then, the analysis module
characterizes the traffic pattern of each network flow by
monitoring the time-varying throughput of the flow. This traffic
pattern information, along with the 5-tuple, will be provided to
the management module (detailed later in this section) for
further actions. The packet payload will be passed to the
execution module (detailed below).
Execution module. The execution module is in charge of the
composition of network protocol stacks. For each network
flow, the execution module maintains a scheduler and a set of
network protocol stacks for packet processing. One network
flow may consist of multiple sub-flows that will be routed
on different network paths for better performance (similar to
the idea of MPTCP). Each sub-flow will be handled by one
of the network protocol stacks. Thus, it is possible to feature
potentially different combinations of network protocols on each
sub-flow (in contrast to MPTCP where TCP is used for all
the sub-flows). The scheduler takes care of the distribution of
packets among the activated network stacks for the network
flow. A network protocol stack itself is a composition of virtual
network protocols on all the layers in the OSI model. Potentially,
additional layers can be introduced for more advanced network
functions or services. Therefore, the network protocol stack can
implement a completely novel academic networking approach,
accelerating network innovations. One example is our UDP
Plus implementation, presented in Section IV. Upon the start
of a network flow from the upper layer, the execution module
creates a set of network protocol stacks and establishes the
connections according to the used protocols, respectively. After
that, packets from the network flow can be scheduled on the
created stacks. To change the used network protocol stack, a
new stack can be built on the fly and the scheduler can then
schedule the packets to the new stack. The execution module
is controlled by the management module regarding creation
and composing of stacks and packet scheduling.
Management module. The management module controls the
operation of VS. Utilizing a low level API, the management
module queries information from the modules and the interfaces
as described above. In addition to the information gathered
internally, the management module also retrieves monitoring
information about the infrastructure from the external controller
through the management interface. Based on this information,
the management module controls the execution module, i.e., the
scheduler as well as the network stacks for the present network
flows. Decisions are for each network flow which network
stacks should be build by the execution module and which
of them should be used by the scheduler. Although network
protocol stacks can be deactivated when no packets will be
scheduled to be transmitted through the stack, the inbound
direction for the connection will be always active. Furthermore
the management module can influence the scheduling behavior
for achieving different optimization goals [9]. In the current
design the management module leverages rules to make
decisions. To find rules for Pareto optimal behavior of the
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management module in different network environments, we
have developed an offline machine learning based approach [10].
Another interesting strategy is to categorize traffic flow patterns
and create behavior rules to optimize them [12]. Other decision
making strategies like online machine learning approaches are
beyond the scope of this paper and are left for future work.

D. Critical Processing Path
In terms of throughput, the performance of network stack

processing in mobile devices is typically limited by the network
technologies, not by the processor power (see CPU overhead
measurement in Section IV) , which shifts the focus to the
latency caused by VS. To avoid additional latency, we identify
the critical path and develop a high-speed and zero-copy
processing pipeline. The critical path for network protocol
virtualization is the processing path through payload source,
analysis module, and execution module including the scheduler
and the network protocol stack, and finally packet sink.

It is beneficial to process the critical path in a single thread
to avoid the context switching time. On the other hand, this
would block the path until the complete packet is processed
and copied to the hardware buffer. This blocking is not an issue
when just one stack is used, because following packages would
be queued in a buffer anyway, since processing is usually faster
than the speed the network interface is able to send packets at.
However, the blocking behavior becomes an issue if multiple
stacks are used at the same time: When one packet is being
processed in a stack, the subsequent packets were processed in
other stacks concurrently. Furthermore, if one stack is blocked
(e.g., by a full buffer) all other stacks were inherently blocked
too, since no following packets can be processed.

To this end, we decided to use a three stage pipeline:
(1) Analyze the packet to assign it to a network flow and
pass it to the corresponding scheduler. In the execution module
the scheduler is still part of the first stage. (2) Process the
packet in a protocol stack assigned by the scheduler. This
includes beside the protocol stack all additional function layers.
Every stack has his own thread independently in order to be
able to process packets concurrently. (3) Send out the packet
to the network interface to finish the packet processing. As the
payload source is usually executed as part of the application, it
is not included as part of the pipeline. In times with multi-core
processors, this single context switch between the first and
second stages can be neglected by using optimized memory
management and thread scheduling. Between the second and
third stages, there is ideally no context switch but a copy action
to the hardware accessible memory.

The management module works concurrently to the critical
path. The low level API is designed not to interrupt critical
path execution. Thus, operational changes are applied after
preparation is done.

E. Receiving Packets
For receiving packets, VS has a passive role. Management

decisions are always made by the sending node and communi-
cated to the receiving node via one of the various management
mechanisms. The receiving VS management module takes care

Fig. 2: Architecture of In-Network-VirtualStack.

of fulfilling the required protocol stack configurations. The
critical processing path consists only of the execution module,
including the network protocol stack and the scheduler.

In VS we consider every connection as a bidirectional
connection. If one protocol does not support a bidirectional
communication channel, VS automatically builds a stack for a
back channel on the receiving side.
F. Operation as In-Network-Process

As motivated in Section II it can be beneficial to change the
protocol on technology boundaries (e.g., between wireless and
wired links). Therefore we developed a middle-box-version of
VS (called In-Network-VirtualStack (INVS)), place-able as in-
network process on or near to technology gateways (e.g., on an
LTE cellular base station). To change protocols, INVS acts as
the intended receiver and builds a respective receiving stack. To
forward packets with a new protocol, INVS builds a respective
stack and sends packets using that. Applications will still have
the transparent transport layer experience, since this action is
completely covered by VS itself. As every additional instance
of INVS adds overhead, its placement should be restricted to
technology boundaries where protocol changes are beneficial.

As illustrated in fig. 2, INVS consists only of the man-
agement and the execution module. The analysis module and
the packet source interface are not needed since there is no
application pushing data into the system. Packets arrive in the
respective execution engine and therefore, packets are directly
fed into the respective scheduler. As in the end-node VS, the
scheduler and optional network functions operate in one thread.
Network stacks have their own threads in order to be able to
operate concurrently.

Also, the management module is working concurrently in
a separate thread. Like in the original VS, it decides based
on rules or direct SDN commands what protocol to choose.
Management communication is handled by INVS. Since INVS
is opening new connections to the communication target, new
management communication channels are created on demand.
G. Prototype Implementation

To proof the feasibility and measure performance and over-
head, we implemented a prototype of the protocol virtualization
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technique VS. The implementation was guided by the design
presented in III. To ensure reasonable performance we used the
programming languages C and C++. To avoid packet payload
copies as much as possible, we use a ring buffer located in
the kernel space. We do not create a single copy of payload
within the critical path of our processing pipeline.

To access kernel-level implemented protocols, we used the
well known socket command and the setsockopt command
to change protocol options. As motivated in Section II, we
also support user level implementation of protocols and
network functions. With the ability to add code as layer
within a stack, VS can be used as rapid prototyping platform.
Leveraging the layer interface provided by our implementation
allows cascading as many layers as desired. Existing protocol
implementations can be wrapped to be included as layer.

IV. EVALUATION

In this section we discuss our evaluation scenario, measure-
ment environment as well as the results. We focus on the
key components of network protocol virtualization. As stated
in Section III, network protocol virtualization also features
multipath connections as side effect, since we can build multiple
network stacks to enable the protocol transitions. In addition,
we can use multiple stacks at the same time. However, the
actual benefit is mainly defined by the scheduler strategy, which
has been discussed in [9].

A. Scenario
As the client server pattern is one of the most common

connection pattern in the internet we used it for the evaluation.
We set it up as following: A mobile client wants to access
content or a service from a data center (DC) (e.g., a website,
or a REST-API access). This involves different participating
networks to fulfill the described scenario: i) The network
inside the DC where the server is located. We consider this as
an arbitrarily fast wired network. ii) The core network required
as delivery network. This is modeled as fast wired network
too. We rely here on measurements from related work [1], [5],
[6]. iii) The client network is the last hop to the client (e.g.,
LTE connection or the home ADSL connection). Usually this
introduces a big amount of limitations. There is a variety of
access technologies, but in our scenario we focus on LTE as
the most common one [1]. For the performance parameter we
rely on measurements from related work [16], [2]. Figure 3
illustrates the described network. For all of our measurements
we use a mouse flow and an elephant flow to represent the
traffic pattern. Likewise in [11], we define the mouse flow as
a low-throughput short-term flow and the elephant flow as a
high-throughput long-term flow.

The considered scenario reveals a big problem of current
end-user connections. Most network connections do not consist
out of a single physical layer type, but a set of link layer types
including wired and wireless links with different properties.
Typically, wired network connections are full-duplex and are
very reliable. On wireless links we deal with half duplex and
high packet loss rates over a shared medium. A major problem
is the resulting latency jitter of medium access technologies

ClientPoPCoreDC
INVS Position

VS Position

Fig. 3: Full evaluation scenario including the network partitions.

or to get access at all in crowded scenarios. With these
contradicting link layer properties, it is impossible to optimize
for all their properties at once. Potential optimizations have to
work over the whole path, whereby the optimization is a big
compromise for all used links and therefore not optimal at all.

We evaluated both wireless and wired connections in
different flavors regarding reliability, throughput, and latency.
Ideally, every link technology utilizes an optimized transport
layer technology to solicit the best performance for the link.

B. Evaluation Environment
For the evaluation we executed VS on bare metal hardware.

VS used existing kernel- and user-level implementations of
the evaluated protocols. Therefore, we used a Intel Xeon E5-
2687W v4 CPU together with Ubuntu 16.04.4 LTS, kernel
version 4.4.0-83. To realize the physical connection between
the different VS-instances, we used the network simulator
NS3 in version 3.27. Leveraging a TAP interface, VS fed
the generated network packets into a ghost node inside the
simulation. Hence, VS and the network protocols were executed
on real hardware, and thus, behaved like in real networks, since
the tap device is treated as actual network hardware.

For simulating wired Ethernet and wireless LTE connections
we used the built-in models available in NS3. Due to the shared
medium LTE enables sending and receiving in slots, which was,
unfortunately, not simulated by the NS3 LTE model. Since we
expect a big influence of the resulting jitter on the congestion
control, we came up with a medium access emulation: We
added a node between the sender and receiver nodes. To the
sender, the intercalated node was connected with an ultra fast
(100Gbps throughput and 0ms delay) CSMA connection, and to
the receiver the intercalated node was connected with a point-to-
point LTE connection reflecting the respective test parameters.
The CSMA connection was capable of forbidding the sending,
which was used to simulate the LTE slots. According to the
scenario presented in Section IV-A we evaluated the abstracted
topologies shown in Figure 4.

INVSVS VS
NS3
CSMA

NS3
LTE

NS3
CSMA
(Slots)

Executed

Simulated

ClientPoPCoreDC

Fig. 4: Abstracted form evaluation scenario.

C. Single Hop Measurements
We start our evaluation by finding the baseline for a variety

of protocols (TCP Cubic, TCP Reno, TCP Vegas, UDP, UDP
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Fig. 5: Latency in relation to propagation delay for different protocols. Measured on a LTE channel with slotted medium access.

Lite, SCTP1, DCCP2) on a set of common link technologies,
namely Ethernet, LTE and WiFi. For variable link layer
performance parameters we used 1) bandwidth {1, 10, 100,
1000} Mbps, 2) propagation delay {0, 1, 10, 100, 1000} ms,
and 3) packet-loss {0, 0.01, 0.1, 1, 10} % . We measured
every combination of the network parameters to research how
different protocols perform in different network environments
and how the parameter influences each other.

In Figure 5 we illustrate the measured latency in relation to
propagation delay on an LTE link. The three diagrams show
the results for loss rates of 0%, 0.1% and 1%. Surprisingly,
the raw link speed does not seem to have any influence
on the performance of the transport layer protocol, when
the host provides enough computing power for the packet
generation. The propagation delay and loss rate have a big
influence on the performance of protocols with congestion
control. In particular, TCP seems to perform very well in the
typical Ethernet configurations till with smaller than 100ms
propagation delays and low loss rates (< 0.1%). But with the
wireless connections, where the medium access is within slots,
TCP seems to have problems to work with higher propagation
delays and high loss rates, resulting in a latency of several
times of the physical propagation delay. We believe this is
a problem with the congestion control algorithm, explaining
also the heterogeneous results for the TCP measurements with
different congestion control algorithms. We observe similar
results in our throughput measurements.

Fortunately, the UDP-based protocols perform very well
since they are very lightweight and do not include congestion
control. UDP is worth to be use in applications that can
deal with light packet loss (e.g., video streaming codecs can
deal with packet losses[20]), or on links which can prevent
packet losses. However, applications often need a reliable
communication channel, which is not provided by UDP.

The above results demonstrate that, depending on the link
conditions transport layer protocols perform very differently
and there is no silver bullet in all cases. Even the configuration
of specific functions like the congestion control has a huge

1https://tools.ietf.org/html/rfc4960
2https://tools.ietf.org/html/rfc4340

influence on performance, while being rarely used in reality.
D. Composed-Connection-Measurements

For the measurement we also composed a typical internet
connection as depicted in Figure 4. We show the raw link
configuration as the first bar in Figure 6, to present the best
possible result. As a baseline we measured the default TCP
configuration of the current Linux kernel (TCP Cubic) with
underwhelming results. As we already realized in the single
hop measurements, TCP Cubic handles slotted medium access
not optimal.

Therefore we leverage the concept of additional stack
layer for adding network functionality. We implemented a
packet ordering layer, a flow control layer and a NACK-
based reliability layer and used them together with UDP. This
combination is shown as UDP-Plus in our measurements. UDP-
Plus fits the needs of single-hop LTE connections perfectly,
since it is still very lightweight without congestion control
but features the reliability of TCP. Still, it is not optimal for
core networks, because on none-exclusive channels congestion
control is needed.

Following the baseline, we measured every network protocol
of our selection to find out which performs the best. With these
results we can configure VS to use the best performing protocol
to establish an optimized end-to-end link. In Figure 6 we show
TCP Vegas and SCTP as better performing alternatives for
the specific link configuration. UDP-Plus can be an alternative
for mouse flows. In a real-world deployment this is very hard
to realize, since we cannot measure every supported protocol
for every network connection. We would need sophisticated
heuristics and constantly exchange monitoring data with the
ISPs to obtain a best guess. However, it could be a starting
point to leverage lightweight protocols for applications, which
can handle a certain degree of unreliability [20].

As last case, we used INVS on technology boundaries to
select and deploy the optimal protocol for each hop as shown
in our single hop measurements. In this case the decision is as
easy as consulting a look-up table, since measurement results
can be produced for every possible environment beforehand.
Thus, this solution is suitable for real-world deployment. The
results are convincing although INVS introduces more overhead
on delay. As motivated above this could be a good solution
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just for the first hop of the clients within the LTE network,
since the first hop turns out to have the biggest influence on
the overall performance. A desirable configuration would be
UDP-Plus for LTE and TCP for the rest of the internet, as we
used it in this evaluation.

In terms of throughput, the slowest hop dominates the
overall performance of the connection, since it literally builds a
bottleneck. Therefore, the optimization comes down to optimize
this bottleneck hop. INVS switches the protocol from default
TCP to a better performing one on this link, and thus, improving
the overall performance. Typically, this is the first hop of the
access network. That makes this approach even more attractive,
since ISPs are typically in full charge over the LTE connections
and often even the phone itself (through customized firmware
as part of their contracts).

E. Overhead
Naturally, network protocol virtualization introduces some

overhead. We measured the introduced latency by sending
packets from a packet generator through VS / INVS to a
receiver and taking respective timestamps. Figure 7 shows the
time VS needs to process the payload and create a network
packet out of it. Obviously, our prototype VS introduces
very low latency due to its optimized design as described in
Section III. Even the slowest measured protocol TCP takes just
around 9µs to get a packet processed. Also INVS (see Figure 8)
has a low latency footprint. Most protocol transformations are
processed within 18µs, except our self-built UDP-Plus, which
is obviously a problem with our implementation. However,
the processing is finished within 80µs at most. Thus, VS’s
and INVS’s influence on latency is in network dimensions
negligible.

The time to open a new connection is dominated by the used
protocol. For stateless protocols (e.g., UDP) there is no extra
delay. For connection-oriented protocols (e.g., TCP) there is a
delay for the respective handshake. Again, processing times are
negligible. In cases where VS and INVS are not pre-configured
with rules (e.g., by a SDN controller), VS opens management
connections to distribute the protocol decisions. This introduces
an additional delay of 3 RTTs.

The maximum throughput per network flow is limited by
the single threading performance of the CPU. In our test
environment we observed a maximum throughput of roughly
260 kpps, which translates with an MTU of 1400 bytes to
roughly 2.9 Gbit/s. We observed no influence of the packet
size on the throughput performance. Note that these numbers
reflect the performance of our prototype, which aims only for
academic demonstration and evaluation purposes.

F. Limitations
We are aware that transport layer protocols are not arbitrarily

exchangeable. It heavily depends on applications needs. In one
case, a robust video stream codec can deal with high losses
and prefers better latency over reliability [20]. In another case,
certain functions like reliability or in-order delivery are heavily
needed. On the other hand, even if an application needs all
these functions, it is still worth to optimize all layers. E.g., LTE

supports both functions in the link layer, which make them
pure processing overhead at the transport layer. Additionally,
our measurements show that, function equivalent protocols
(like SCTP) perform better in certain cases.

Not to forget, most developers choose the TCP/IP stack
as a common practice or for compatibility doubts. There
is a big likelihood that many applications do not need all
the functions provided by TCP. As motivated above, network
protocol virtualization provides the necessary environment to
harmonize application needs, network capabilities, and used
network protocols.

V. RELATED WORK

There is a huge amount of concepts tackling the internet
ossification problem. It would go beyond the scope of this paper
to mention them all. For a very good overview we recommend
the survey by G. Papastergiou et al. [21]. Here we discuss
related work to network protocol virtualization at end- and
router-nodes.

In [19], Martins et al. presents ClickOS, which is a
lightweight operating system using click modular router [17]
to enable network flow manipulation. It suits the needs for
applications regarding network function virtualization perfectly
well. However, it is neither intended to run on end-devices (e.g.,
laptops or cellphones) nor designed to work on networking
protocols itself like VS.

In the IETF Draft [23], You presents 3RED TAPS. Like
VS it wants to provide a decoupling of applications and the
network transport layer. Another common goal is to achieve that
decoupling without a customization or reimplementation of the
applications. Thus, TAPS need a kernel modification to insert
their services before the network packets are processed by the
kernel. However, VS is intended to decouple the applications
from all network matters and not just from the transport layer.
Also, the goals of VS include cross layer optimization of
application, transport and link layer.

In the last couple years, there were some new approaches
to replace the socket interface by a more high level interface,
offering a service oriented specification instead of specifying a
protocol. The approaches either define a new socket interface
to allow the application to label flows [14], to express
communication preferences by policies [22], optimize for
application objectives, e.g., throughput or delay [7], or provide
a resource oriented view to the application [8], [3]. Schmidt
et al. [22] and Higgins et al. [14] focus on selecting an interface
for the whole data flow. Deng et al. [7] also aim at switching
the interface during the data flow if the used transport protocol
supports roaming. All these approaches show the benefit of
choosing an appropriate interface.

VI. CONCLUSION AND OUTLOOK

In this paper we presented our approach of network protocol
virtualization. It decouples applications and network protocol
stacks, while enabling cross-layer optimization for network
protocol stack. This addresses not only the network environment
agnosticism of applications, but also the application agnosticism
of network environments and protocols. Based on a real world
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scenario we demonstrated how network protocol virtualization
can improve the overall network performance for complex
network connections build on many different network link
technologies. Thereby we showed, depending on application
requirements reasonable performance improvements in terms
of latency and throughput are possible.

In future, we want to evaluate the presented approach in a
real world deployment. We showed the important basic features
in the described scenario, but in fact, we see some more
application fields in dynamic mobile communication scenarios
(e.g., car or IoT communication). Furthermore, we want to
go beyond the current performance by utilizing specialized
hardware for network protocols and management tasks.
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