
Letting off STEAM: Distributed Runtime Traffic
Scheduling for Service Function Chaining

Marcel Blöcher
TU Darmstadt

bloecher@dsp.tu-darmstadt.de

Ramin Khalili
Huawei Technologies, Munich

ramin.khalili@huawei.com

Lin Wang
VU Amsterdam
& TU Darmstadt

lin.wang@vu.nl

Patrick Eugster
Università della Svizzera italiana (USI)
& Purdue University & TU Darmstadt

eugstp@usi.ch

Abstract—Network function virtualization has introduced a
high degree of flexibility for orchestrating service functions.
The provisioning of chains of service functions requires making
decisions on both (1) placement of service functions and (2)
scheduling of traffic through them. The placement problem (1)
can be tackled during the planning phase, by exploiting coarse-
grained traffic information, and has been studied extensively.
However, runtime traffic scheduling (2) for optimizing system
utilization and service quality, as required for future edge cloud
and mobile carrier scenarios, has not been addressed so far.

We fill this gap by presenting a queuing-based system model
to characterize the runtime traffic scheduling problem for service
function chaining. We propose a throughput-optimal schedul-
ing policy, called integer allocation maximum pressure policy
(IA-MPP). To ensure practicality in large distributed settings,
we propose multi-site cooperative IA-MPP (STEAM), fulfilling
runtime requirements while achieving near-optimal performance.
We examine our policies in various settings representing real-
world scenarios. STEAM closely matches IA-MPP in terms of
throughput, and significantly outperforms (possible adaptations
of) existing static or coarse-grained dynamic solutions, requiring
30%-60% less server capacity for similar service quality. Our
STEAM prototype shows feasibility running on a standard server.

Index Terms—Service function chaining, runtime traffic
scheduling, stochastic processing networks

I. INTRODUCTION

Advances in core technologies like network function vir-
tualization (NFV) have laid the foundation for envisioning a
dynamic multi-service network architecture for 5G and beyond,
where communication spans data centers, carrier networks,
and edge locations, accessing dynamically created services
with computing and storage resources distributed throughout
the network. NSF’s 18-535 [1] and EU’s ICT-20 [2] calls for
proposals detail the demand for providing such end-to-end
network services, which steer packets through sequences of
service function instances (SFIs), referred to as service function
chains (SFCs) [3]. However, one missing component towards
these visions, especially considering that service functions (SFs)
increasingly include application-specific services [4]–[6], are

This work has been co-funded by the Federal Ministry of Education
and Research (BMBF) Software Campus grant 01IS17050 “dynSFC”, the
German Research Foundation (DFG) as part of the projects B2 and C7 in
the Collaborative Research Center (CRC) 1053 “MAKI” and DFG grant
392046569 (61761136014 for NSFC), and the EU H2020 program under grant
ICT-815279 “5G-VINNI” and ERC grant FP7-617805 “LiveSoft”. We would
like to thank Daniel Failing for his support building the STEAM prototype.

SFCs provisioning mechanisms [1], [7], [8], that are capable of
creating SFC instances, and scheduling traffic through them, on
the fly [1]. This requires making decision on both (1) placement
of SFIs and (2) scheduling of traffic through them [9].

Most existing works focus on the placement problem (1),
deciding where SFIs should be deployed (e.g., on which server)
and how many resources (e.g., CPU shares) should be assigned
to each of them [10]–[15]. These solutions perform chaining of
SFs in a mostly static manner, where traffic is steered through
deployed SFIs in the network with load-balancing performed
among them. Few dynamic solutions are discussed [7], [8], [16]–
[19], in which the deployment of these SFIs and their resource
assignments are periodically adapted to changes in network
traffic and topology, as required for future carrier networks.
However, these solutions are still coarse-grained [17], where
the adaptation takes seconds to take effect [19], or cannot be
applied in real time due to its high complexity [7] and the
involvement of disruptive SFIs migration [17]. Therefore, these
proposals are not able to explore and exploit the resources that
become available on the fly as a result of real-time, sudden,
changes in network traffic. Yet, as we shall show, such a fine-
grained approach based on per-packet scheduling is required for
achieving high resource utilization under high traffic dynamics.

Differently from previous work, in this paper, we thus
treat the SFC traffic scheduling problem (2) as a runtime
scheduling problem. The goal is to dynamically assign packets
with specific processing requests, to active SFIs in the network.
We assume that SFIs are already deployed on servers using
any of the algorithms for (1). However, these SFIs are not
pre-assigned any resources or traffic. Our goal is to select an
appropriate SFI for each packet and to decide on the amount of
resources that should be assigned to each SFI at runtime. The
major challenge is to quickly react to dynamic traffic conditions,
without any a priori knowledge of traffic distribution.

We characterize the SFC traffic scheduling problem with a
stochastic model and show that this problem can be reduced
to the scheduling problem in a stochastic processing network
(SPN) [20]. We propose the integer allocation maximum
pressure policy (IA-MPP) for SFC scheduling, a derivation of
maximum pressure policy (MPP), which we show is throughput-
optimal. It is also asymptotically optimal for minimizing a cost
function of buffer occupancy levels in the network, providing
approximate guarantees on latency. Furthermore, we show that

824

TABLE I: Notation used

Symbol Description
V Set of SFFs in the network
d̄E Average network delay of link E ∈ E
S Set of servers
cS Processing capacity of server S ∈ S
F Set of SFs
µF Processing rate of SF F using one resource unit
I, IS Set of all SFIs and of those running on server S
wI Resource share of SFI I at a server
B Set of all buffers at all SFFs
~z Vector of buffer utilization levels
A Set of all activities for the corresponding SPN
H(t) Set of all feasible allocations at time t
R Input-output matrix of the network
θl, θh Thresholds used by SALVE
φb, φw,S Batch size and threshold of s ∈ S used by STEAM

the time complexity of IA-MPP is bounded by a linear term
on the number of sites in the network. Importantly, IA-MPP
requires no a priori information about network traffic patterns.

Based on practical constraints in large deployments, we
present a novel distributed variant of our solution dubbed
multi-site cooperative IA-MPP (STEAM), where a scheduler
instance is running at each site using only site-local state, and
is invoked for batches of packets. We study the performance
of STEAM using a packet-level simulator as well as a
prototype implementation based on DPDK [21]. We observe
that STEAM performs closely to the optimum (IA-MPP) and
significantly outperforms (possible adaptation of) existing static
or coarse-grained dynamic solutions. Specifically, STEAM
improves resource usage, requiring much fewer resources to
achieve similar service quality. The prototype implementation
of STEAM shows the feasibility of our runtime solution.

The main contributions of this paper are as follows:
1) We introduce a model of SFC provisioning infrastructure

based on the SFC RFC [9], and formulate the SFC runtime
scheduling problem. We show that our problem can be
reduced to the scheduling problem in an SPN.

2) We present a throughput-optimal solution IA-MPP, with
linear time complexity (in the number of sites), where
schedulers have access to each other’s state.

3) We introduce a distributed heuristic STEAM, where
schedulers have access only to their local state and
scheduling costs are amortized over batches.

4) We evaluate our solutions based on a discrete-event packet-
level simulator, showing that our solutions significantly
outperform dynamic variants of existing solutions: (i)
STEAM reduces the required amount of resources by 30%-
60% compared to the baselines, while providing similar
or even better service quality; (ii) STEAM’s scheduling
quality does not suffer from small batch sizes (≤ 64),
making runtime scheduling feasible in practice.

5) We describe a prototype implementation of STEAM and
show the feasibility of running STEAM in real-time,
achieving 1-4 106/s scheduling decisions (1 CPU core).

We introduce our SFC model in § II. § III presents IA-MPP
and § IV introduces STEAM. § V evaluates our solutions, § VI

3 SFs (F1: F2: F3:) SFF-SFI binding

SFF
1 SFF

2

SFF
3

S2 S3 S4 S5S1

Fig. 1: Small scenario with two sites, three SFFs, five servers,
and three SFs with multiple SFIs of each.

discusses related work, and § VII draws conclusions.

II. MODEL AND PROBLEM

In this section we introduce a comprehensive model for the
runtime traffic scheduling problem for SFC. We use calligraphic
fonts for sets (e.g., S), capital letters to refer to members of a
set (e.g., S ∈ S), lower-case letters to refer to variables (e.g.,
v), and letters with arrows, such as ~z, to refer to vectors. For
two vectors ~x, ~y of the same size, ~x × ~y denotes the cross
product of the vectors and ~x · ~y denotes their dot product.
Table I summarizes major notation used.

A. System Model

1) Infrastructure. We consider an architecture similar to
the one proposed in RFC 7665 [9]. Our network consists of
geographically distributed sites, each of which holds servers for
running SFIs as depicted in Fig. 1. Attached to each site is a set
of service function forwarders (SFFs), which are responsible
for forwarding traffic within their site and among sites. We
model the network of SFFs across sites with a directed graph
G = (V, E), with V the set of SFFs and E the set of links
interconnecting SFFs. For any link E ∈ E , dE(l) denotes
the l-th packet propagation latency, where {dE(l), l ≥ 1} is
assumed to be a sequence of i.i.d. random variables, with an
average noted d̄E and a finite variance. We thus consider that
this propagation latency is time-varying. Moreover, we assume
that network planning, as discussed in [22], [23] for different
use cases, is performed beforehand, as a result of which enough
capacity is assigned to transmission links among SFFs.

Attached to each SFF, we have a set of servers each running
SFIs. S denotes the set of all servers in the system. Each server
S ∈ S has a total processing capacity of cS (cS > 0), and
hosts at least one SFI. In addition, each SFI belongs to one
of the SFFs at the same site, which means that this respective
SFF considers the SFI for scheduling purposes. Servers and
SFFs in a site are interconnected by a high-throughput low-
latency network. For the sake of tractability, our optimal
solution (§ III) assumes no latency and bandwidth constraints
for communication within a site. This assumption is relatively
realistic as modern data center networks can provide ultra-
low latency and full bisection bandwidth between any pair of
servers [24], [25]. We relax the assumptions in § IV.

2) SFIs. An SF is a piece (type) of processing logic applied
to network packets, while an SFI is an instantiation of an SF
deployed on a server. For simplicity, we focus on stateless SFIs,

825

where packets from the same flow can be scheduled separately.
(Stateful SFIs can be built on top of stateless SFIs using a
distributed data layer [26], [27].) We denote by F the set of
all SFs in the system. Multiple SFIs of the same SF F ∈ F
might be deployed in the network (see Fig. 1 as an example).
We denote by I the set of all running SFIs of all SFs in the
network and by IS the set of SFIs running on server S.

We consider that SFIs are already deployed in the network, by
using any of the solutions proposed in the literature (e.g., [10],
[12]; see also § VI). Differently from these studies, however,
the SFIs are not pre-assigned any resources or traffic. The
scheduler dynamically decides where to send a packet and
how many resources to assign to each SFI. Without loss of
generality [28]–[31], we assume that all SFIs of the same type
in the system have the same processing rate when given equal
resources. We denote by µF the processing rate of SF F ∈ F
when provided one resource unit. Thus, k ·µF is the processing
rate of an SFI of type F using k units of resources. Moreover,
we assume that the processing capacity of a server is shared
among all co-located SFIs according to some given policy.
Under such a policy, an SFI I ∈ IS receives a share of wI
of the total capacity of server S ∈ S and the total capacity
of the server is constrained by enforcing

∑
I∈IS wI ≤ 1.

Furthermore, we assume that each SFI holds a local buffer to
store incoming packets and applies non-preemptive execution
of the corresponding SF. The assumptions indicated above are
not restrictive, representing many real-world use cases [32].

3) Network traffic. Each SFF V ∈ V runs a classifier and a
scheduler and also behaves as both ingress and egress for the
network traffic. We assume that the network traffic is composed
of many flows originating from different users connected to the
network. The set of ingress and egress nodes of a flow, which
are SFFs in V , is determined using the source and destination
addresses of the flow. We assume that there are buffers at each
SFF, which store incoming packets (new packets arriving to
the site via this SFF, or packets forwarded by other SFFs)
before scheduling over the available resources.

Like in RFC 7665 [9], we assume that the classification
of packets in the network is known. This classification is
performed at the ingress node of the flow and the classification
information can be embedded in the header of each packet of
the flow, e.g., by using network service headers (NSHs) [33].
Each packet, after classification, will be assigned an SFC that
the packet has to go through. The packet header maintains
the processing stage of the packet, specifying by which SF in
its SFC it is to be processed next. An SFC in the system is
specified by an ordered set of SFs that a flow packet should
be processed through, i.e., C = (F1, ..., Fk), F1, ..., Fk ∈ F ,
where k is the number of SFs on the SFC. In addition, each
SFC C is given a set of quality of service (QoS) metrics
that the handling of packets undergoing C has to conform
to, which in our considered scenarios contains the end-to-end
delay. (F1, F2) ∈ C denotes that both F1 and F2 are part of
C and that F1 precedes F2 in C. An SF in C can be handled
by any of its corresponding SFIs deployed in the network.

B. Problem Description

We now describe the SFC runtime traffic scheduling
problem (in short, SFC scheduling problem). A packet class
defines a set of packets in the network (1) to which the
same SFC needs to be applied and (2) which are at the
same processing stage within that SFC. At each SFF, we
maintain a set of buffers, each holding packets falling into a
same packet class. The SFC scheduling problem consists in
deciding at runtime how to assign packets from buffers to the
corresponding SFIs and how to allocate the resources to SFIs.
For each packet, the end-to-end delay is the sum of the delays
at SFFs, SFIs, and propagation delays between SFFs. Our
objective is to maximize the system’s processing throughput,
while constraining the average delay experienced by packets.

III. OPTIMAL SCHEDULING POLICY

We show that the SFC scheduling problem is reducible to the
scheduling problem in stochastic processing networks (SPNs)
[28], and propose a scheduling policy achieving the above
objectives (§ II-B) with SFFs accessing each other’s state.

A. Background on SPNs

SPNs are a general class of network models that have been
used to characterize a wide range of application fields [20],
including manufacturing systems and cross-training of workers
at a call center. The key elements of an SPN include a set of
buffers, a set of processors, and a set of activities. Each buffer
holds jobs that await service. Each activity takes job(s) from
at least one of the buffers and requires at least one processor
available to process the job(s). A job departing after service
from a buffer will next be routed to another buffer, or leave the
network, with probabilities depending on the activity taken.

B. Reducing SFC Scheduling to SPN Scheduling

With an ideal setting, the SFC scheduling problem can be
reduced to a variant of the scheduling problem in an SPN.

1) Buffer. According to our system model, each SFF in the
network holds a number of buffers which are used to store
packets. All incoming packets of the same packet class at an
SFF are stored in the same buffer. We denote by B the total set
of buffers in the system. A packet’s class can be determined at
an SFF by extracting information encapsulated in the packet
header. When an SFF receives a packet, it determines the
packet’s class and pushes it into the corresponding buffer.
Packets in the same buffer are processed in FIFO order.

2) Processor. Each server in our model corresponds to a
processor in an SPN. Each server can process packets belonging
to the packet classes handled by its SFIs, regardless of its
location. As there can be multiple SFIs for the same SF,
multiple servers can process packets from the same buffer.

3) Activity. We define an activity as the processing of a
packet from a buffer B ∈ B by an eligible server, i.e., a server
in S which contains an SFI of the required SF. The total set of
activities can be expressed by A = {B 7→ S | B ∈ B ∧ S ∈
SB}, where SB ⊆ S is the set of eligible servers for packets in
buffer B. B 7→ S denotes an activity which processes packets

826

from a buffer B over a server S. We denote by AB the set of
activities connected to buffer B and by AS the set of activities
connected to server S. Associated with each activity A ∈ A
is a processing rate µA that determines the rate at which a
packet will be processed by this activity. The processing rate
depends on the relation of the server, buffer, and SFF. If the
server and the buffer are under the control of the same SFF, the
processing rate is given by the service rate of the corresponding
SFI, i.e., µA = µF where F is the SF of the SFI; otherwise,
the processing rate of the activity is given by a function g(·)
of the latency between the corresponding SFFs and the SFI’s
service rate, i.e., µA = g(µF , d̄E) where E is the link between
the SFF holding the buffer and the SFF controlling the SFI.

4) Routing. Each packet from a buffer B, once being served
by an activity A, changes its packet class and gets injected
into buffer B′ or leaves the network. We define by pABB′ the
probability that a packet from buffer B is injected into buffer
B′. Consequently, 1−

∑
B′∈B p

A
BB′ is the probability that the

packet leaves the network. The packet’s class transitions as its
processing stage is advanced by one SF after being served by
the activity. In our model, pABB′ has a very simple form. If a
buffer B holds packets at the last stage within their SFC, then
pABB′ = 0 for all B′ ∈ B. For any other B ∈ B, there always
exists one B′ ∈ B such that pABB′ = 1, else pABB′ = 0.

5) Example. To further clarify the above mappings, we
take the example in Fig. 1 and consider two SFCs: C1 =
(F1, F2, F3) and C2 = (F2). We have four packet classes: (1)
packets with SFC C1 at their first processing stage (to be
processed by F1); (2) packets with SFC C1 at their second
stage (to be processed by F2); (3) packets with SFC C1 at
their last stage (to be processed by F3); (4) packets with SFC
C2 to be processed by F2. As we have 3 SFFs, we would have
a total of 12 buffers as depicted in Fig. 2. Activities A1, A2,
and A3 connect buffer B1 to S1, S3, and S4, respectively. µA1

,
the processing rate of A1, is µF1

– the processing rate of SFI
of type F1; µA2 = g(µF1 , d̄E1), where E1 is the link between
SFF1 and SFF2; and µA3 = g(µF1 , d̄E2), with E2 being the
link between SFF1 and SFF3. When a packet in buffer B1 is
served by any of the connected activities, it changes its class
and is injected into the corresponding next buffer – B2 if it is
served by A1, B6 if served by A2, B10 if served by A3 etc.

6) Reduction to SPN. Knowing the topology of G, the set
of servers S, the set of SFCs, and the set of SFIs I, we can
determine B, S, A, and pABB′ . In the ideal case, we assume
that at any time t, all schedulers in the network are aware of
the state of all buffers, i.e., the buffer utilization level which
is given by ~z(t), a vector of size |B|, and also of the state
of every S ∈ S, qS(t) = {0, 1}, where qS(t) = 0 if S is
idle, else 1. Our SFC scheduling problem is then reducible
to the SPN scheduling problem [30], aiming at designing a
control policy for the activities such that the SPN’s throughput
is maximized, while ensuring that all the buffers are stabilized.

C. Integer Allocation Maximum Pressure Policy (IA-MPP)

Dai and Lin [30] show that the optimal scheduling can be
obtained for SPNs by following the maximum pressure policy

C2C1

Buffers

SFF
1

Activities

Processors

S2 S3 S4 S5S1

B1 B2 B3 B4

A1 A2 A3 A5A4

C2C1
B5 B6 B7 B8

C2C1
B9 B10 B11 B12

SFF
2

SFF
3

Fig. 2: An SPN representation of the scenario in Fig. 1 with two
SFCs C1 = (F1, F2, F3), C2 = (F2). Showing only A1-A5.

(MPP). We prove that a simplified version of MPP, IA-MPP
can be applied to the SFC scheduling problem. IA-MPP also
achieves optimality, but with much less computation than MPP.

The essential decision we have to make immediately is on
the amount of resources allocated to each of the activities
at a server when it becomes idle. We denote by a vector ~h
of size |A| an allocation. A feasible allocation has to satisfy
0 ≤ hA ≤ 1, A ∈ A. If an activity performs at level hA,
it consumes a fraction of hA resources of the corresponding
server. Note that

∑
A∈AS

hA = 1,∀S ∈ S. Let H(t) be the
set of all feasible allocations in the network at time t. For each
buffer B ∈ B and each activity A ∈ A, we define

rBA =

µA A ∈ AB ,
−µA A ∈ AB′ and pAB′B = 1,

0 otherwise.
(1)

R = (rBA) is called the input-output matrix of the net-
work. It captures the average processing rates of packets
from buffer B consumed by activity A, as introduced in
[28]. Given a weight vector ~α of size |B|, we define by
Φ~α(~h, ~z(t)) = (~α× ~z(t)) ·R~h the network pressure at time
t with parameter ~α under allocation ~h ∈ H(t) and buffer
utilization level ~z(t). MPP aims to maximize network pressure
by picking suitable allocations:

~h∗ ∈ arg max~h∈H(t) Φ~α(~h, ~z(t)). (2)

Note that H(t) is bounded and convex. As Φ~α(~h, ~z(t)) is linear
in ~h, the maximum of Φ~α(~h, ~z(t)) will be achieved at one of
the extreme points. We can prove that the existence of an
extreme allocation for maximum network pressure is ensured.

Lemma 1. For any buffer level ~z(t) (zB(t) ≥ 0,∀B ∈ B),
there exists an extreme allocation ~h∗ ∈ H(t) that maximizes
the network pressure Φ(~h, ~z(t)) such that for each constituent
buffer B of ~h∗, the buffer level zB(t) is positive.

Proof. The network we consider is strict Leontief [34] as
each activity is associated with exactly one buffer. The lemma
follows directly if we consider preemptive scheduling [30].
With non-preemption, the lemma holds when the network is
reversed Leontief. This is (also) the case here as in our model
each activity needs exactly one processor to be active.

Lemma 2. The extreme allocation ~h∗ for maximum network
pressure is an integer allocation.

827

Proof. An allocation A is called an integer allocation if it
satisfies hA ∈ {0, 1},∀A ∈ A. We assume that when the
processor is idle, it takes on a dummy activity A0. Thus,
processor S will be able to take any of the activities in A0

S =
A0 ∪AS . We now prove the lemma by contradiction. Suppose
we are given an extreme allocation ~h where ∃Ã ∈ A such
that hÃ ∈ (0, 1). Let S̃ be the processor that holds activity
Ã. (Note that activity Ã requires only one processor due to
the fact that our network is reversed Leontief.) For each A ∈
A0
S̃

, we define a new allocation ~h′(A) by modifying ~h in the
following way: We process A with hA = 1 at processor S̃ and
keep the allocation on other servers unchanged. It is easy to
check that ~h′(A) is a feasible allocation. It follows that ~h =∑
A∈A0

S̃

hA~h
′(A), where we set hA0 = 1−

∑
A∈A0

S̃
,A6=A0

hA.

Since
∑
A∈A0

S̃

hA = 1, Ã ∈ A0
S̃

, and hÃ < 1, the summation

contains at least two terms. As a result, ~h is a linear combination
of at least two feasible allocations and thus, it cannot be an
extreme allocation, contradicting the assumption. Hence any
extreme allocation must be integer.

This shows that the allocation produced by MPP in our SFC
scheduling problem never splits the processing capacity of a
processor. We thus refer to this version of MPP as IA-MPP.
This property gives us the following network stability result.

Theorem 1. The network operating under a non-preemptive
IA-MPP can be stabilized if ever possible.

Proof. To prove this, we first introduce an auxiliary linear pro-
gram called static planning problem defined by Harrison [28]:

min ρ s.t. R ~x = 0;
∑
A∈AS

xA ≤ ρ,∀S ∈ S;xA > 0,∀A ∈ A.

Here ~x is a column vector of size |A| representing the long-run
fraction of time during which each activity is used. The above
problem indicates that the long-run input rate to the buffer is
equal to the long-run output rate from the buffer. According to
Theorem 1 proposed in [29], the static planning problem has
a feasible solution with ρ ≤ 1 if the network is stable under
some service policy. On the other hand, applying Theorem 9
of the same work [29], we can prove that the non-preemptive
non-processor-splitting IA-MPP can stabilize the network if
the static planning problem has a feasible solution with ρ ≤ 1
considering the fact that our network is reversed Leontief.

Corollary 1. For any ~α > 0, IA-MPP with parameter ~α is
asymptotically optimal with respect to network throughput.

Proof. Lemma 1 implies that our network model and assump-
tions satisfy the extreme-allocation-available (EAA) condition.
Combined with Theorem 1, IA-MPP with parameter ~α is
asymptotically efficient according to Theorem 1 in [30].

Theorem 2. For any given ε > 0, there exists an IA-MPP ~h∗

that is asymptotically optimal for a quadratic cost function of
the buffer level ~z(t), i.e.,

∑
B∈B αB(zB(t))2.

The proof of the above theorem follows from the fact that
our network model and assumptions satisfy Assumptions 1-4

in [30]. Thus, the same result on asymptotic optimality of
quadratic holding cost in Theorem 3 from [30] applies here.
This result basically provides a theoretical estimation of the
buffer level and thus, implies a rough guarantee on network
latency since queuing latency is usually the dominant factor
during the entire packet processing. We will further validate
end-to-end latency for packet processing in the network in § V.

Following Lemma 2, IA-MPP can be simplified as follows.
For any S ∈ S, and any activity A ∈ AS , we define

ΦAS =
∑
B∈B αBrBAzB(t). (3)

If processor S is in idle state at time t, the scheduler selects

A∗ ∈ arg maxA∈AS
ΦAS (4)

to be served over the server. When more than one allocation
attains the maximum, a tie-breaking rule will be applied. Note
that the solution space for Eq. 4 is much smaller than that for
Eq. 2, requiring much less computation as a consequence.

Lemma 3. The IA-MPP scheduler has a time complexity of
O(|V|), with |V| the total number of SFFs in the network.

Proof. To find optimal allocation, and for a given S ∈ S,
we need to perform the calculation in Eq. 3 for all A ∈ AS
and then apply Eq. 4. Note that rBA under the summation has
nonzero values for only one or two B ∈ B (refer to Eq. 1). The
calculation in Eq. 3 can be reduced to summation of two terms,
and hence has O(1) complexity. The IA-MPP calculation thus
has complexity of O(|B|) as |AS | ≤ |B|. Furthermore, we
have |B| = k|V| where k is the total number of packet classes
which is a constant for a given network.

This lemma indicates that time complexity of IA-MPP scales
with the number of SFFs, which we expect to be much smaller
than the number of servers or the number of SFIs.

IV. DISTRIBUTED SCHEDULING POLICY

While scheduling optimally, IA-MPP assumes that schedulers
can access each other’s state. This can become problematic
in distributed, multi-site, setups, when such accesses cannot
be synchronized instantly. In this section we thus propose a
distributed variant of IA-MPP which takes into account the
constraints of a deployable scheduler, disabling cross-scheduler
accesses and considering link latencies for scheduling.

A. STEAM Overview

We now propose multi-site cooperative IA-MPP (STEAM),
which is an adaptation of IA-MPP to a distributed setting. In
short, with STEAM, each SFF runs its own scheduler using only
site-local state, together with an admission control policy (ACP)
module. Furthermore scheduling is performed on batches.

1) Local state. We consider a multi-site setting where a
scheduler instance running at SFF V ∈ V has only site-local
information: the state of (1) buffers at V (e.g., buffer occupancy
levels), (2) SFIs of V (e.g., workload), and (3) servers running
these SFIs (e.g., busy or idle). Topological information (e.g.,
where SFIs of other SFFs are running) is static and thus pertains
to global information known to all scheduler instances.

828

2) Admission control policy. For the distributed scheduling
problem, an SFF decides whether to serve a packet by an own
local SFI, or by a remote SFI. This decision is performed by
an ACP module called STEAM T-valve (SALVE). If no SFI
of the required SF is available locally, the packet must be
forwarded to another SFF. SALVE balances load among SFFs
by forwarding packets when local traffic load is too high.

To measure traffic load, SALVE estimates the arrival rates
and the service rates for each SF the SFF has SFIs for, using an
exponentially weighted moving average estimator with a fixed
history length, taking also into account traffic bursts [35]. Using
these estimations, SALVE applies a threshold-based mechanism
to decide whether to serve a packet locally or by other SFFs.
Specifically, we use a pair of thresholds θl ≤ θh. We define the
traffic load tl as the ratio of the rate estimator of the packets
arriving, and the rate estimator of the corresponding service
rate. For each incoming packet, SALVE checks the tl of the
SF related to the packet’s next step and performs the following:
if tl < θl, the packet is processed locally; if θl ≤ tl ≤ θh, it is
processed locally with probability 1− load−θl

θh−θl and forwarded
to other SFFs otherwise; if tl > θh, it is forwarded to other
SFFs. Note that SALVE updates its arrival rate estimation only
when handing off a packet to STEAM. To prevent forwarding
loops, SALVE keeps track of each packet’s detour count, and
drops a packet if this number is above a threshold. We thus use
the TTL header of NSH, which is intended for loop detection
of SFCs and comes at no additional cost [33].

When SALVE decides to detour a packet, it applies a
weighted round-robin mechanism to choose among all SFFs
which have at least one matching SFI to serve this packet. We
use the total processing capacity of each SFF’s servers (with
matching SFIs) to set the weights. Note that server capacities
are static, hence SALVE calculates the weights offline.

3) Scheduler. STEAM takes the scheduling logic from IA-
MPP, but considers the network to consist only of the buffers
at the local SFF, local server state, and the activities assigning
these buffers to these servers. Whenever a local server is idle,
STEAM decides the next activity using a modified Eq. 3:

ΦAS =
∑
B∈B αB r̂BAẑB(t). Here ~̂z(t) is the local buffer

utilization level and R̂ = (r̂BA) is the local input-output matrix,
with values ~z(t) and R for buffers and activities that are local
and zero otherwise.

4) Batch scheduling. IA-MPP schedules a packet over a
server when the server is idle. However, per-packet runtime
scheduling may not fit well with large deployable systems
mainly for two reasons: (1) Per-packet runtime scheduling
introduces a runtime overhead for each packet, resulting in
high system load at the SFF even if the scheduling logic is
lightweight. (2) Taking a server into account for scheduling
only if the server is idle is optimal in theory when link delays
are negligible compared to processing delays at the servers.
This might however not always be the case in practice.

STEAM thus uses a packet threshold φw,S for each of its
servers and applies batch scheduling with batch size φb. The
batch size φb specifies the (maximum) number of packets
STEAM sends over to a server at each scheduling round. More

precisely, STEAM uses for each of its servers S ∈ S a threshold
φw,S equaling the number of packets the fastest SFI of server
S is able to process within the expected round-trip time (RTT)
between the server and the SFF. If there are less than φw,S
packets on the way or queued at a server, STEAM considers
this server to be available for taking a scheduling decision,
sending up to φb packets from the selected buffer to this server.

Using φb and φw,S reduces the scheduling granularity to
one decision per batch and also reduce the effect of link
delays. However, the larger the batches, the fewer possibilities
STEAM has for choosing the “best” scheduling decision. § V-E
investigates the effects of choosing φb.

Note that with IA-MPP there is no need for a separate
resource sharing policy at the server since the share each SFI
receives is inherently dictated by the scheduling decision. When
batch scheduling is enabled, we employ a round-robin policy
at each server. Since φw,S and φb are very small in general, the
impact of such a round-robin policy is considered negligible.

B. STEAM Deployment

While focusing on the theoretical design and concepts of
STEAM in this paper, we consider practical constraints of an
implementation as well. Following Eiffel [36], which shows
feasibility of software packet schedulers running at high packet
rates, we implement our STEAM prototype as a software
scheduler and show its feasibility in § V-E. Besides using a
software scheduler, we consider white-box switches [37] and
servers with SmartNICs [38] as possible deployment targets.

V. EVALUATION

We conducted performance evaluation with large-scale
simulations as well as a prototype implementation. Our packet-
level discrete event simulator simulates scenarios in compliance
with RFC 7665 [9], comprising the network topology including
link latencies, packet handling at SFFs, SFIs, and servers, the
processing of the SFIs running on servers, and the schedulers.

A. Algorithms Compared Against

We compare IA-MPP and STEAM with the following two
variants of existing static or coarse-grained dynamic algorithms.

1) OSPP. As a variant of [8], [39], the offline static planning
policy (OSPP) performs offline planning ahead of traffic arrival,
but applies runtime load balancing to react to sudden traffic
changes. Similarly to these solutions, if multiple SFIs of the
same SF are available, OSPP distributes the traffic using service
rate of SFIs as weights, while also considering latency between
SFFs – favoring higher-capacity SFIs closer to a packet’s egress.

2) SGHP. The second scheduler, shortened greedy heuristic
policy (SGHP), adapts the most recent existing heuristics
SGH [15] and SPH [7] which do not require any a priori
information like arrival rate or resource demand of a request.
Upon receiving a packet, SGHP extends the routing path
iteratively and selects the next SFI among all possible site-local
ones which is likely to provide the shortest delay to serve the
packet based on link latency and queue state information. If
the load of the local site is too high or if there is no matching
local SFI, SGHP starts forwarding to other sites using SALVE.

829

100 150 200
Norm. Server Capacity [%]

40

60

80

100
S

uc
ce

ss
 R

at
e

[%
]

OSPP
SGHP
IA-MPP

(a) Success rate over server capacity

100 150 200
Norm. Server Capacity [%]

60

80

100

S
er

vi
ce

 Q
ua

lit
y

[%
]

OSPP
SGHP
IA-MPP

(b) Service quality over server capacity

80 85 90 95 100
Target Success Rate [%]

100

125

150

175

200

225

N
or

m
. S

er
ve

r C
ap

ac
ity

 [%
]

OSPP
SGHP
IA-MPP

(c) Req. capacity over target success rate

Fig. 3: Single site scenario, running centralized scheduling IA-MPP vs baselines. Varying server
capacity cS to reach full success rate. cS normalized to IA-MPP’s cS at 100% success rate.

4 8 16 128
Sites

0
25
50
75

100
125

No
rm

. S
er

ve
r C

ap
ac

ity
 [%

]

IA-MPP 90% Succ.
IA-MPP 100% Succ.
STEAM 90% Succ.
STEAM 100% Succ.

Fig. 4: From centralized to
distributed scheduling, varying
#sites. Normalized to IA-MPP.

50 100 150 200
Norm. Server Capacity [%]

40

60

80

100

S
uc

ce
ss

 R
at

e
[%

]

OSPP
SGHP
STEAM

(a) Success rate over server capacity

50 100 150 200
Norm. Server Capacity [%]

40

60

80

S
er

vi
ce

 Q
ua

lit
y

[%
]

OSPP
SGHP
STEAM

(b) Service quality over server capacity

80 85 90 95 100
Target Success Rate [%]

50

75

100

125

150

175

N
or

m
. S

er
ve

r C
ap

ac
ity

 [%
]

OSPP
SGHP
STEAM

(c) Req. capacity over target success rate

Fig. 5: 50 sites running distributed scheduling: STEAM vs baselines. Varying server capacity
cS to reach full success rate. cS normalized to STEAM’s cS at 100% success rate.

8 16 32 64 128 256
SF types

0

20

40

60

80

100

N
or

m
. S

uc
ce

ss
 R

at
e

[%
]

OSPP
SGHP
STEAM

Fig. 6: 50 sites, varying #SFs,
using cS within 50%-100% of
STEAM’s cS with full success.

B. Setup

Unless stated otherwise, STEAM uses θl = 0.1, θh = 1.3,
φb = 1. We measure the performance of the schedulers when
running the servers at a certain capacity cs. Sweeping cs allows
to draw conclusions of how effectively the schedulers are able
to leverage all available processing power. All scenarios use
link latencies following a Poisson distribution with 700µs for
SFI-SFF links and 3000µs for SFF-SFF links [40], [41]. We
repeat each experiment with five different seeds.

1) Metrics. We study two performance metrics: Success
rate is the ratio of successfully served packets to the total
number of arrivals. Service quality is one minus the total
latency (ingress-egress) of a packet normalized to the QoS
deadline of its SFC, also called “average response latency” [7].
The higher the values for these metrics, the better the solution.

2) Workload. Unless stated otherwise, the experiments use a
configuration as follows. The flow arrivals are time-varying and
bursty. We use a Markov modulated process (MMP) [42] to
simulate flow arrivals, which is a widely used model [43]–[45],
with two states – “low” and “high”. λl and λh are the flow
arrival rates in these respective states, pl is the probability of
transition from low to high state, and ph the opposite. We
use pl = 0.56, ph = 0.4, λh = 1/240µs, λl = 1/24µs.
We consider the packet arrival process within a flow to be
random and independent from other flows, following a Poisson
distribution (λf = 1/800µs). Flow sizes are also random,
following a Poisson distribution (λs = 150µs). Each flow
randomly selects an existing SFC and a pair of ingress/egress
SFFs. Each SFC has a QoS deadline, set as a function of the

service rates of involved SFs, which specifies the maximum
allowed latency observed by a packet (typically� 100ms). We
consider the SFI processing rates to be similar to the numbers
reported for NFVs [26], [39], [46], in particular to values in
the range of 1s/82µs - 1s/200µs per resource unit (cf. § II).

C. Single-Site Experiments

We first consider a single-site topology with 1 SFF, 36
servers, 5 SFs and 80 SFIs. There are five SFCs: C1 = (F1, F2),
C2 = (F1, F3, F5), C3 = (F2, F4), C4 = (F5), and C5 =
(F3, F4) with QoS deadlines {56, 100, 44.4, 28, 56.4}ms.
Fig. 3 shows the results for IA-MPP and the two competing
heuristics running a single site, so all schedulers have access
to all state, making comparison fair. We normalized server
capacities to the capacity required by IA-MPP to achieve full
success. We observe that IA-MPP outperforms the baselines,
even in a non-distributed scenario. Specifically, we observe
from Fig. 3a and Fig. 3b that IA-MPP provides the best success
rate and quality of service, given a server capacity, while OSPP
shows the worst performance. Fig. 3c depicts the required
capacity to achieve success rates above 80%. To achieve 0
packet drops, an OSPP solution needs twice the capacity(!),
and SGHP 25% more server capacity. These results illustrate
that using IA-MPP reduces required server capacity to achieve
a target success rate, while also providing better packet latency.

D. Multi-Site Experiments

1) IA-MPP vs STEAM. First we study the effect of
distributing the scheduling decisions per SFF. We sweep the
number of sites from 4 to 128 (and traffic load accordingly),

830

50 100 150
Norm. Server Capacity [%]

70

80

90

100

S
uc

ce
ss

 R
at

e
[%

]

OSPP
SGHP
STEAM

(a) Success rate over server capacity

50 100 150
Norm. Server Capacity [%]

70

80

90

100

S
er

vi
ce

 Q
ua

lit
y

[%
]

OSPP
SGHP
STEAM

(b) Service quality over server capacity

80 85 90 95 100
Target Success Rate [%]

50

75

100

125

150

N
or

m
. S

er
ve

r C
ap

ac
ity

 [%
]

OSPP
SGHP
STEAM

(c) Req. capacity over target success rate

Fig. 7: Pcap workload: STEAM vs baselines. Varying server capacity cS to reach full success
rate. cS normalized to STEAM’s cS at 100% success rate.

1 8 32 64 128 256
STEAM Batch Size

60

80

100

120

140

160

No
rm

. S
er

ve
r C

ap
ac

ity
 [%

]

90% Succ.
100% Succ.

Fig. 8: Performance effect on
success rate of varying batch
size running STEAM.

1 4 8 16 32
STEAM Batch Size

0

5

10

15

M
ill

io
n

P
ac

ke
ts

/s

4 SFIs/Server
16 SFIs/Server

(a) Goodput at 64B packets workload

1 4 8 16 32
STEAM Batch Size

0

2

4

6

8

M
ill

io
n

P
ac

ke
ts

/s

4 SFIs/Server
16 SFIs/Server

(b) Goodput at 128B packets workload

Fig. 9: STEAM prototype scheduling performance; varying φb

and use for each site the same configuration as in § V-C.
Fig. 4 compares the required server capacity to reach 90% and
100% success rate running STEAM vs IA-MPP. The values
are normalized within each site to the capacity required by IA-
MPP to achieve full success. Note that each STEAM instance
uses only site-local state. We observe that the performance
gap between STEAM and IA-MPP increases as we increase
the size of the network or the required success rate target.
For smallest topology, the two perform almost identically,
but the gap increases to 40% when using a 32 times larger
topology, hence this gap grows slower compared to the topology
size increase. Nevertheless, STEAM shows great performance,
considering the fact that IA-MPP runs global optimization.

2) Performance at scale. Next we consider a topology in
the image of publicly available information on data center
locations of an Internet service provider (ISP) [41]. The
topology comprises 50 sites, each with one SFF and 6 to
12 servers. There are 10 SFs in the network with a total of
1600 SFIs across all sites and 30 SFCs each with up to four SFs.
We compare STEAM with baseline solutions, all using only
site-local state. Fig. 5 depicts the results. STEAM shows best
performance, reaching full success with 50− 70% less server
capacity. This is as STEAM, driven by our optimal solution,
tries to maximize the resource multiplexing in the network
and hence can efficiently use available resources. Furthermore,
better service quality signals better packet latency with STEAM.

3) Complexity increases. Next we vary the number of SFs
in order to make the scheduling problem more challenging.
The more SFs in the network, the more complex the problem

becomes for STEAM, hence scheduling decisions might be
negatively affected. We use again the ISP setup with 50 sites
and set the number of total SFIs to 20 times the number of SFs,
and create 3 times as many SFCs as SFs available. Fig. 6 shows
the average success rates when running servers at capacities
between 50% to 100% of the capacity level which STEAM
needs to achieve full success. We see that STEAM’s gain in
success rate over baselines remains always above 20% - 35%.

4) Trace-driven workload. In this experiment we use real-
world trace files of a related scenario capturing, end-to-end
voice and video Skype calls with a total of 484 nodes [47]. We
consider a topology of 10 sites, 5 SFs, 5 SFCs, 100 SFIs in
total, and 4 servers per site, so that each SFF receives the traffic
from ∼ 48 Skype nodes. For each seed we take a 10min slice
from the trace, which we consider to be a reasonable period
between two offline planning phases. We consider packets with
same source and destination addresses to belong to the same
flow and apply the same SFC. Fig. 7 shows similar results as
when running the MMP-based workload. STEAM shows best
success rates and service quality at all shown server capacities.
Using STEAM reduces the amount of server resources needed
for full success by 30% - 70% compared to the baselines.
These results indicate that gains are not due to specific tuning
of the traffic model, but hold across different traffic patterns.

5) Batch scheduling. Finally, we study the effect of batch
size φb on STEAM’s performance. Batch scheduling lowers
time complexity, but might negatively affect overall scheduling
decisions. We study the trade-off. Fig. 8 shows the required
capacity to achieve 90% and 100% success rate when varying
φb of STEAM. Values are normalized to the server capacity
required when running STEAM with φb = 1 (no batching) and
reaching full success. Up to φb = 64, there is no significant
drawback to batching. With φb of 128 or 256, 90% target
success rate requires slightly more server capacity; to reach
full success, we require 50% - 60% more server capacity. Next
we show how batching makes runtime scheduling feasible.

E. Prototype

As described in § IV-B, we have implemented a prototype of
STEAM based on DPDK [21], including the NSH protocol [33]
to check feasibility running on a standard server with varying
bucket sizes φb. We use two servers (each 2× E5-2630,

831

128GB memory, Intel X520-2 10G SFP+; Linux 4.15.0-48-
generic; DPDK 18.11.1) connected via a switch. One of the
servers runs our packet generator (a FastClick [48] module),
and the other runs STEAM. STEAM uses one core for
receiving packets and running SALVE (we set θl = θh =∞,
to force all packets going to STEAM), and one core for
running STEAM’s scheduler sending packets back to the packet
generator (intentionally to the SFIs). For each SFF buffer we
use a DPDK ring buffer of up to 2048 packets. The system uses
16 hugepages of 1GB each, shared among the ring buffers.
Note that we did not configure special optimizations, e.g.,
distributing the buffers across multiple Rx cores.

We run experiments with packets of size 64B and 128B,
which corresponds to ∼ 14.88 and ∼ 8.45 106/s packets,
respectively. The packet generator sends packets at line rate
to STEAM and receives packets from STEAM after each
scheduling decision. We report the rate at which the traffic
generator receives packets from STEAM. To test the effect
of scheduling complexity, we run the experiments with 4 and
16 SFIs per server. Fig. 9 shows the packet rate STEAM can
uphold, v.s. the (theoretical) hardware limit of the NIC (red).
STEAM reaches almost line rate starting from a batch size of
8, which translates to 2 up to 3.8 106/s scheduling decisions
combined with batching, STEAM hits almost 15∗106/s packets.
For packets of size 64B, we do not hit the NIC limit, as we
did not apply all possible micro-optimizations.

VI. RELATED WORK

In short, our work differs from all previous works related
to virtualized network function (VNF) placement/scheduling
in one or more of following aspects: (1) We consider runtime
traffic scheduling without a priori knowledge of traffic dis-
tribution. (2) We target global optimization as a distributed
scheduling problem, assuming no complete view of the system.
(3) Scheduling decisions are made at packet-level vs flow-level,
making our solution more adaptive to traffic dynamics.

Some recent works [31], [49]–[51] consider optimizations
and scheduling at the level of a single server or CPU core. In
particular, NFVnice is a VNF framework for CPUs that aims for
fair and efficient resource allocation of chains, considering the
impact of different VNFs on resource usage. Katsikas et al. [31]
propose an intertwined setup of network devices and servers,
allowing to reduce inter-core transfers of packets on the server
and by this improving single-server VNFs throughput. Meng
et al. [50] split an SFC into smaller semantically equivalent
VNFs, enabling reuse of parts of an SFC across others.

Many research efforts have recently targeted network-wide
VNF scheduling, inside a single data center or across multiple
data centers. Nevertheless, most of them consider centralized
SFC/VNF scheduling, assuming a scheduler with global
knowledge of the network and often statistical information
on traffic distribution. Mechtri et al. [52] consider joint
placement and scheduling of SFCs for infrastructures mapping
to undirected graphs, using a priori knowledge of the required
static bandwidth of each network flow. Similar problems
are investigated by others [10]–[15], [18]. Assuming perfect

knowledge about traffic volumes, these placement/scheduling
solutions can be applied only offline, or take decisions ahead
of flow arrival. Qu et al. [16] consider dynamic flow demands,
but allow a server to run only one SF instance and a link to
forward only traffic from one flow at a time. Eramo et al. [17]
allow traffic to change while being processed, but still require
knowledge of flows’ nominal and maximum traffic volumes.
Anwer et al. [18] use the input and output traffic volume of all
SFIs in the system to dynamically update the routing of SFC.

Different optimization objectives have been considered for
VNF placement and scheduling [8], [39], [53]–[55]. Marotta
et al. [53] tackle energy-efficiency in SFCs placement and
scheduling, minimizing the number of involved switches and
servers. Caggiani et al. [54] focus on internal switching of
VNFs on a server to reduce the total switching overhead of
an SFC. However, networking cost (e.g., latency) is neglected.
Fei et al. [39] consider demand prediction for VNFs, based on
which VNFs are scaled up by adding new instances and traffic
is split among instances, with the objective of minimizing
prediction error and system configuration cost. Yikai et al. [55]
uses deep learning to reduce the cost of involved servers, but
employs coarse grained scheduling per SF.

Some earlier work related to fair queuing is also relevant
here. Bennet and Zhang [56] propose hierarchical fair queuing
to provide network load balancing by scheduling packet flows
over available paths. The proposed solution requires a priori
knowledge of each flow type’s share of assigned resources and
arrival rates. Stoica et al. [57] use predictions of arrival rates
of flow types to decide on the share of resources which should
be assigned to each flow type and the corresponding link that
a packet should be scheduled over. These solutions therefore
fall into the same category as the other proposals mentioned
above. Besides, they do not consider any chaining of SFs.

The works most closely related to ours are those of (1)
Bhamara et al. [58] and (2) Satyam et al. [8]. (1) applies queu-
ing models for servers and links in a multi-cloud environment
to minimize inter-cloud traffic and response time. (2) studies
VNF placement and CPU allocation for co-located VNFs in
5G networks to minimize end-to-end traffic latency. Both (1)
and (2) assume a priori knowledge of packet arrival rates.

VII. CONCLUSIONS

We proposed a runtime SFC scheduling policy, which can
be deployed in a distributed manner, and demonstrated that,
given fixed resource capacities, it can achieve significantly
higher success rates and better service quality than existing
static or coarse-grained solutions. It thus decreases the amount
of resources in the network that need to be allocated to provide
a target quality of service guarantee. Further avenues include
(1) We assumed that SFIs are stateless. Although a realistic
assumption in many scenarios [26], [27], it might not hold in
others. We thus aim to study stateful SFIs. (2) We are keen to
study the effect of admission control on the performance. (3)
We aim to apply machine learning solutions to the problem.

832

REFERENCES

[1] National Science Foundation, “US-EU Internet Core & Edge Technolo-
gies (ICE-T),” NSF 18-535, https://www.nsf.gov/pubs/2018/nsf18535/
nsf18535.pdf, May 2018.

[2] European Commission, “ICT-20-2019-2020: 5G Long Term
Evolution,” Horizon 2020 - Information and Communication
Technologies, European Commission Decision C(2019)4575,
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/
main/h2020-wp1820-leit-ict en.pdf, July 2019.

[3] IETF, “Service Function Chaining Use Cases in Mobile Networks,” Tech.
Rep. draft-ietf-sfc-use-case-mobility-09, Jan. 2019.

[4] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” Communications Magazine,
vol. 55, no. 2, pp. 216–223, 2017.

[5] A. Alim et al., “FLICK: Developing and Running Application-Specific
Network Services,” ATC, 2016.

[6] R. Stoenescu et al., “In-Net: in-network processing for the masses,”
EuroSys, 2015.

[7] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF
placement for service-customized 5g network slices,” INFOCOM, 2019.

[8] A. Satyam, M. Francesco, C. F. Chiasserini, and D. Swedes, “Joint VNF
Placement and CPU Allocation in 5G,” INFOCOM, 2018.

[9] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, 2015.

[10] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” INFOCOM, 2015.

[11] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions
placement and routing optimization,” ACM CloudNet, 2015.

[12] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” NetSoft, 2015.

[13] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S. Davy,
“Design and evaluation of algorithms for mapping and scheduling of
virtual network functions,” NetSoft, 2015.

[14] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimization
of service function chaining and resource allocation in network function
virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

[15] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” INFOCOM, 2016.

[16] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” TCOM, vol. 64, no. 9,
pp. 3746–3758, 2016.

[17] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An Approach
for Service Function Chain Routing and Virtual Function Network
Instance Migration in Network Function Virtualization Architectures,”
TON, vol. 25, no. 4, pp. 2008–2025, 2017.

[18] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming Slick
Network Functions,” SIGCOMM, 2015.

[19] S. Palkar et al., “E2: a framework for nfv applications,” SOSP, 2015.
[20] R. J. Williams, “Stochastic Processing Networks,” Annual Review of

Statistics and Its Application, vol. 3, no. 1, pp. 323–345, 2016.
[21] Intel, “Data plane development kit,” https://www.dpdk.org.
[22] Cisco, “Best Practices in Core Network Capacity Planning,” Tech. Rep.
[23] R. Nadiv and T. Naveh, “Wireless backhaul topologies: Analyzing

backhaul topology strategies,” White Paper Ceragon, 2010.
[24] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,

“Drill: Micro load balancing for low-latency data center networks,”
SIGCOMM, 2017.

[25] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi,
and M. Wójcik, “Re-architecting datacenter networks and stacks for low
latency and high performance,” SIGCOMM, 2017.

[26] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions:
Breaking the tight coupling of state and processing,” NSDI, 2017.

[27] 3GPP, “Technical Realization of Service Based Architecture; Stage 3,”
3GPP, Technical Specification (TS) TS29.500, 2018, version 0.4.0.

[28] J. M. Harrison, “Brownian models of open processing networks: canonical
representation of workload,” The Annals of Applied Probability, vol. 10,
no. 1, pp. 75–103, 2000.

[29] J. G. Dai and W. Lin, “Maximum Pressure Policies in Stochastic
Processing Networks,” Operations Research, vol. 53, no. 2, pp. 197–218,
2005.

[30] ——, “Asymptotic optimality of maximum pressure policies in stochastic
processing networks,” The Annals of Applied Probability, vol. 18, no. 6,
pp. 2239–2299, 2008.

[31] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV Service Chains at the True Speed of the Underlying
Hardware,” NSDI, 2018.

[32] J.-Y. Le Boudec, Performance Evaluation of Computer and Communica-
tion Systems. EPFL Press, Lausanne, Switzerland, 2010.

[33] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),”
RFC 8300, 2018.

[34] M. Bramson and R. J. Williams, “Two Workload Properties for Brownian
Networks,” Queueing Systems, vol. 45, no. 3, pp. 191–221, 2003.

[35] M. Alizadeh et al., “CONGA: Distributed congestion-aware load
balancing for datacenters,” CCR, vol. 44, no. 4, 2014.

[36] A. Saeed, Y. Zhao, N. Dukkipati, E. W. Zegura, M. H. Ammar, K. Harras,
and A. Vahdat, “Eiffel: Efficient and Flexible Software Packet Scheduling,”
NSDI, 2019.

[37] T. Nelson, N. DeMarinis, T. A. Hoff, R. Fonseca, and S. Krishnamurthi,
“Switches are monitors too!: Stateful property monitoring as a switch
design criterion,” HotNets, 2016.

[38] D. Firestone et al., “Azure accelerated networking: Smartnics in the
public cloud,” NSDI, 2018.

[39] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF Scaling and Flow
Routing with Proactive Demand Prediction,” INFOCOM, 2018.

[40] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” CCR, vol. 45, no. 4, 2015.

[41] Cogent Communications, “Cogent Network Map,” http://cogentco.com/
en/network/network-map.

[42] W. Fischer and K. S. Meier-Hellstern, “The Markov-Modulated Poisson
Process Cookbook,” Perform. Eval., vol. 18, no. 2, pp. 149–171, 1993.

[43] M. J. Neely, “Delay Analysis for Maximal Scheduling With Flow Control
in Wireless Networks With Bursty Traffic,” TON, vol. 17, no. 4, pp. 1146–
1159, 2009.

[44] K. Wang, M. Lin, F. Ciucu, A. Wierman, and C. Lin, “Characterizing
the Impact of the Workload on the Value of Dynamic Resizing in Data
Centers,” Perform. Eval., vol. 85, pp. 1–18, 2015.

[45] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and
S. Dawson, “Markovian Workload Characterization for QoS Prediction
in the Cloud,” IEEE CLOUD, 2011.

[46] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” ACM CloudNet,
2015.

[47] Telecommunications Networks Group - Politecnico di Torino, “Traces
from Real Internet Traffic,” http://tstat.polito.it/traces-skype.shtml.

[48] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”
IEEE/ACM ANCS, 2015.

[49] S. G. Kulkarni et al., “NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains,” SIGCOMM, 2017.

[50] Z. Meng, J. Bi, C. Sun, H. Wang, and H. Hu, “CoCo: Compact and
Optimized Consolidation of Modularized Service Function Chains in
NFV,” ICC, 2018.

[51] G. P. Katsikas, M. Enguehard, M. Kuźniar, G. Q. Maguire Jr, and
D. Kostić, “SNF: Synthesizing high performance NFV service chains,”
PeerJ Computer Science, vol. 2, p. e98, 2016.

[52] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” TNSM, vol. 13, no. 3, pp.
533–546, 2016.

[53] A. Marotta and A. Kassler, “A power efficient and robust virtual network
functions placement problem,” ITC, vol. 1, 2016.

[54] M. C. Luizelli, D. Raz, and Y. Sa’ar, “Optimizing NFV Chain Deployment
Through Minimizing the Cost of Virtual Switching,” INFOCOM, 2018.

[55] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: adaptive online service function chain deployment with deep
reinforcement learning,” IEEE/ACM IWQoS, 2019.

[56] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” TON, vol. 5, no. 5, pp. 675–689, 1997.

[57] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
Achieving approximately fair bandwidth allocations in high speed
networks,” CCR, vol. 28, no. 4, pp. 118–130, 1998.

[58] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102, pp.
1–16, 2017.

833

