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Abstract—The power consumption of enormous network de-
vices in data centers has emerged as a big concern to data center
operators. Despite many traffic-engineering-based solutions, very
little attention has been paid on performance-guaranteed energy
saving schemes. In this paper, we propose a novel energy-
saving model for data center networks by scheduling and routing
“deadline-constrained flows” where the transmission of every flow
has to be accomplished before a rigorous deadline, being the most
critical requirement in production data center networks. Based
on speed scaling and power-down energy saving strategies for
network devices, we aim to explore the most energy efficient
way of scheduling and routing flows on the network, as well as
determining the transmission speed for every flow. We consider
two general versions of the problem. For the version of only flow
scheduling where routes of flows are pre-given, we show that it
can be solved polynomially and we develop an optimal combina-
torial algorithm for it. For the version of joint flow scheduling
and routing, we prove that it is strongly NP-hard and cannot
have a Fully Polynomial-Time Approximation Scheme (FPTAS)
unless P=NP. Based on a relaxation and randomized rounding
technique, we provide an efficient approximation algorithm which
can guarantee a provable performance ratio with respect to a
polynomial of the total number of flows.

I. INTRODUCTION

Cloud computing has become a fundamental service model

for the industry. In order to provide sufficient computing

resources in clouds, large-scale data centers have been exten-

sively deployed by many companies such as Google, Amazon

and Microsoft. While providing powerful computing ability,

those data centers are bringing a significant level of energy

waste due to the inefficient use of hardware resources, result-

ing in both high expenditure and environmental concern.

Obviously, the servers should be the first target for energy

reduction as they are the most energy-consuming component

in a data center. By involving techniques such as Dynamic

Voltage Frequency Scaling (DVFS) or hardware virtualization,

the energy efficiency of servers has been improved to a large

extent. As a result, the network device, as the second-place

energy consumer, has taken a large portion in the total energy

expenditure of a data center, bringing about urgent economic

concerns over data center operators.

The problem of improving the network energy efficiency in

data centers has been extensively explored (e.g., [1], [2], [3],

[4], [5]). Despite some energy-efficient network topologies for

data centers, most of the solutions are concentrated on traffic

engineering which aims to consolidate network flows and turn

off unused network devices. The essential principle underlying

this approach is that data center networks are usually designed

with a high level of connectivity redundancy to handle traffic

peak and that the traffic load in a data center network varies

significantly over time. Due to the fact that the idle power

consumed by the chassis usually takes more than half of a

switch’s total power consumption [6], turning off the switch

during idle period should give the most power reduction in

theory.

However, the practicality of these aforementioned solutions

are quite limited because of the following two aspects: i) Most

of the traffic-engineering-based approaches are ineluctably

dependent on traffic prediction which seems not feasible or

not precise enough [7]. This is because the traffic pattern

in a data center network largely depends on the applications

running in the data center. Without precise traffic prediction,

the network configuration generated by the energy-saving unit

has to be updated frequently. Consequently, the network will

be suffering from oscillation; ii) Saving energy leads to perfor-

mance degradation. Most of the solutions only focus on energy

efficiency without considering the network performance (e.g.

throughput, delay). This will dramatically bring down the

reliability of the network, which is not acceptable in practice as

providing high performance is the primary goal in a network.

In order to overcome the above two limitations, we propose

to view the network traffic from the application-level aspect

instead of making use of the static network status (loads on

links) that is rapidly monitored from the network or predicted

(e.g. [1]). We observe that while the aggregate traffic load

varies over time, the most critical factor that conditions the

performance of many data exchanges in data centers is meeting

flow deadlines ([8], [9], [10], [11], [12]). This is due to the

fact that representative data center applications such as search

and social networking usually generate a large number of small

requests and responses across the data center that are combined

together to perform a user-requested computation. As user-

percieved performance is evaluated by the speed at which

the responses to all the requests are collected and delivered

to users, short or guaranteed latency for each of the short

request/response flow is strongly required. Given a threshold

for tolerable response latency, the system efficiency will be
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definitely conditioned by the number of flows whose deadlines

are met (that are completed within the time threshold).

Inspired by this observation, we consider to represent the

networking requirements of applications as a set of deadline-

constrained flows1 and we aim to design particular energy-

efficient scheduling and routing schemes for them. Although

the job scheduling on single or parallel processors with dead-

line constrains has been extensively studied, little attention

has been paid on the job scheduling problem on a multi-hop

network [13], especially with the objective of optimizing the

energy consumption. To the best of our knowledge, this is

the first solution that theoretically explores energy-efficient

schemes by scheduling and routing deadline-constrained flows

in data center networks.

To summarize our main contributions in this paper: i)
We describe the deadline-constrained network energy saving

problem and provide comprehensive models for two gen-

eral versions of this problem – Deadline-Constrained Flow

Scheduling (DCFS) and Deadline-Constrained Flow Schedul-

ing and Routing (DCFSR); ii) We show that DCFS can

be optimally solved in polynomial time and we propose an

optimal combinatorial algorithm for it; iii) We show by in-

depth analysis that solving DCFSR is strongly NP-hard and

cannot have a fully Polynomial-Time Approximation Scheme

(FPTAS) unless P=NP; iv) We provide an efficient approxi-

mation algorithm which solves the problem with a provable

performance ratio.

The remainder of this paper is organized as follows. Sec-

tion II presents the modeling for the deadline-constrained

network energy saving problem where two versions of the

problem are introduced. Section III discusses the DCFS prob-

lem where an optimal combinatorial algorithm is provided to

solve it. Section IV discusses the DCFSR problem and presents

some complexity and hardness analysis. Section V presents an

approximation algorithm with guaranteed performance ratio

for DCFSR where some numerical results are also provided.

Section VI summarizes related work and section VII concludes

the paper.

II. THE MODEL

Based on some preliminary definition, we provide the

general modeling for the deadline-constrained network energy

saving problem in this section.

A. The Data Center

We model a data center as a distributed computing system

where a set of servers is connected with a network G = (V, E)
where V is the set of nodes (switches and hosts) and E is the

set of network links. We assume all the switches, as well as

all the links, in V are identical which is reasonable because

advanced data center networks such as fat-tree [14] or BCube

[15] are usually conducted on identical commodity switches.

We use the classical queueing model for links, that is, a link

is modeled as a forwarding unit with buffers at its two ends.

1If not specified, “flow” in this paper refers to a certain amount of data
that has to be transmitted from a source to a destination on the network.

When the switch finishes processing a data packet, the egress

port for this packet will be determined and this packet will

be injected into the buffer of the egress link. The packets that

queue in the buffer will be transmitted in order according to

some preset packet scheduling policy.

We consider the power consumption of network components

such as ports and links which are the main power consumers

that can be manipulated for energy conservation.2 With a slight

abuse of notation, the power consumption of the ports at the

ends of a link is also abstracted into the power consumption of

the link for the ease of exposition. For the power consumption

model, we adopt the power function from [16] which is an

integration of the power-down and the speed scaling model

that has been widely used in the literature. For each link e ∈ E ,

a power consumption function fe(xe) is given to characterize

the manner in which energy is being consumed with respect to

the transmission rate xe of link e. We assume uniform power

functions as the network is composed of identical switches

and links. Formally, for every link we are given a function

f(·) which is expressed by

f(xe) =

{
0 xe = 0

σ + μxα
e 0 < xe ≤ C

, (1)

where σ, μ and α are constants associated with the link type.

Constant σ is known as the idle power for maintaining link

states, while C is the maximum transmission rate of a link.

Normally, the power function f(·) is superadditive, i.e., α > 1.

In order to get rid of the network stability problem introduced

by frequently togging on and off links, we assume that a link

can be turned off only when it carries no traffic during the

whole given period of time. Making this assumption also helps

reduce the considerable power incurred by changing the state

of a link, as well as the wear-and-tear cost.

B. Applications

We model an application as a set of deadline-constrained

flows each of which consists of a certain amount of data

that has to be routed from a source to a destination on the

network within a given period of time. In order to avoid packet

reordering at the destination end, we assume that each flow

can only follow a single path. Nevertheless, multi-path routing

protocols can be incorporated in our model by splitting a big

flow into many small flows with the same release time and

deadline at the source end and each of the small flows will

follow a single path.

Let [T0, T1] be a fixed time interval, during which a set

J = {j1, j2, . . . , jn} of flows has to be routed on the

network. Associated with each flow ji ∈ J are the following

parameters:

• wi amount of data that needs to be routed,

• ri, di its release time and deadline respectively, and

2The biggest power consumer in a switch, the chassis, cannot achieve power
proportionality easily due to drastic performance degradation. Nevertheless,
our approach is a complement and can be incorporated with switch-level
power-down based solutions.
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• pi, qi its source and destination respectively.

Without loss of generality, we assume T0 = minji∈J ri and

T1 = minji∈J di. In our setting, we allow preemption, i.e.,

each flow can be suspended at any time and recovered later.

We define Si = [ri, di] as the span of flow ji and we say that

ji is active at time t if t ∈ Si. The density of flow ji is defined

as Di = wi/(di − ri). A schedule is a set

S = {(si(t),Pi) | ∀ji ∈ J , ∀t ∈ [ri, di]} (2)

where si(t) is the transmission rate chosen for flow ji at time

t and Pi is the set of links that are on the chosen path for

carrying the traffic from this flow. A schedule is called feasible

if every flow can be accomplished within its deadline following

this schedule, i.e., S satisfies∫ di

ri

si(t)dt = wi, ∀ji ∈ J . (3)

We define Ea as the set of active links where

Ea = {e ∈ E | ∃t ∈ [T0, T1], xe(t) > 0}. (4)

Consequently, the total energy consumed by all the links

during [T0, T1] in a schedule S can be expressed by

Φf (S) = (T1 − T0) · |Ea| · σ +

∫ T1

T0

∑
e∈Ea

μ (xe(t))
α
dt (5)

where xe(t) is the transmission rate of link e at time t and

xe(t) = si(t) if flow ji is being transmitted on link e at time

t. Our objective is to find a feasible schedule that minimizes

Φf (S). Depending on whether the routing protocol is given

or not, we have two versions of this problem which we call

DCFS (Deadline-Constrained Flow Scheduling) and DCFSR

(Deadline-Constrained Flow Scheduling and Routing). We will

discuss them separately in the following sections.

III. DEADLINE-CONSTRAINED FLOW SCHEDULING

In this section, we discuss the DCFS problem. Specifically,

we model this problem as a convex program and show that

it can be optimally solved. We then provide an optimal

combinatorial algorithm for it.

A. Preliminaries

In DCFS, the routing paths for all the flows are provided.

Routing the flows with these paths, each link will be assigned

with a set of flows Je = {ji | e ∈ Pi}. We omit those

inactive links that satisfy Je = ∅ since they will never be

used for transmitting data. Thus the set of active links is

Ea = E \{e ∈ E | Je = ∅}. As all the links in Ea will be used,

we simplify the problem by replacing the power consumption

function with g(xe) = μxα
e . Consequently, the objective of the

problem becomes to find a feasible schedule S such that

Φg(S) =
∫ T1

T0

∑
e∈Ea

g (xe(t)) dt (6)

is minimized. For the sake of tractability, we first consider the

case where the routing path for each flow is a virtual circuit.

That is, when a flow is being routed, all the links on the routing

path of this flow will be totally occupied by the packets from

this flow. Nevertheless, we will show that this assumption is

generally true in the optimal solution and it can be realized by

assigning priorities to the packets from each flow in a packet-

switching network.

We define the minimum-energy schedule as the schedule that

minimizes the total power consumption but may not satisfy the

maximum transmission rate constraint on each link. Then, we

introduce the following lemmas.

Lemma 1. The minimum-energy schedule will use a single
transmission rate for every flow.

Lemma 2. The minimum-energy schedule will choose an as
small as possible transmission rate for each flow such that the
deadlines of flows can be guaranteed.

Proof: We focus on one flow with an amount w of data

that has to be routed in time interval [r, d]. The routing path for

this flow is denoted by P and the number of links in P is given

by |P|. Using Lemma 1, we assume a single transmission rate

s is given to process this flow. The total energy consumed

by the links for routing this flow can be expressed by Φg =
μsα ·w/s = μ ·w · sα−1. As long as α > 1, Φg is minimized

when we have the minimum transmission rate s for this flow

such that the deadlines of all the flows can be satisfied. In this

sense, the minimum-energy schedule will use the minimized

transmission rate for each flow.

Following the above lemma, we observe that as long as

there are feasible schedules, the minimum-energy schedule is

feasible. In other words, the minimum-energy schedule is also

the optimal schedule for DCFS. Equivalently, the maximum

transmission rate constraint xv(t) ≤ C can be relaxed in

DCFS. In the remainder of this section, we will omit that

constraint.

B. Problem Formulation

We denote the transmission rate for flow ji as si according

to Lemma 1. The DCFS problem can be formulated as the

following convex program.

(P1) min
∑
e∈Ea

∑
ji∈Jv

wi · μsα−1
i

subject to ∑
ji∈J ′

wi

si
− (max

ji∈J ′
di − min

ji∈J ′
ri) ≤ 0 J ′ ⊆ Je

si > 0 ∀ji ∈ J
The total transmission time and the total energy consumption

of flow ji are wi/si and wi/si ·μsαi = wi ·μsα−1
i , respectively.

The first constraint forces that for an arbitrary link e, all

the flows in any subset of Je has to be processed before

the last deadline of the flows in that subset. The second

constraint represents that the transmission rate for each flows

has to be larger than 0. It is easy to verify that program

(P1) is convex because the objective function is convex (as

we assume α > 1) while all the constraints are linear.
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flow  #1
flow #2

A B C

Figure 1. A line network consisting of three nodes connected by two links.

As a result, the DCFS problem can be solved optimally in

polynomial time by applying the Ellipsoid Algorithm [17].

However, as the Ellipsoid Algorithm is not practically used

due to its high complexity in typical instances, we aim to

construct an efficient combinatorial algorithm by exploring the

characteristics of the minimum-energy schedule.

C. An Optimal Combinatorial Algorithm

We now provide a combinatorial algorithm which can

always find the optimal schedule for DCFS. Before presenting

the algorithm, we first give a characterization of the optimal

schedule through the following example.

Example 1. Consider a line network whose topology is given
in Fig. 1. The power consumption of the links is characterized
by function f(xe) = x2

e. On this network we have two flows
j1 and j2 that need to be routed. The details of the two flows
are given by the following multi-tuples

j1 � (p1 = A, q1 = C, r1 = 2, d1 = 4, w1 = 6),

j2 � (p2 = A, q2 = B, r2 = 1, d2 = 3, w2 = 8).

According to Lemma 1, we denote the transmission rates

for j1 and j2 as s1 and s2, respectively. Consequently, we have

the following three constraints 6/s1 ≤ d1 − r1 = 2, 8/s2 ≤
d2−r2 = 2 and 6/s1+8/s2 ≤ d1−r2 = 3, while the objective

function is Φ = 2×6×s1+8×s2. It is easy to check that in the

optimal schedule,
√
2s1 = s2 = 8+6

√
2

3 . We then construct an

instance of the speed scaling problem on single processor (SS-

SP) raised by Yao et al. [18]. Consider we have two jobs with

required numbers of CPU cycles of 6
√
2 and 8 respectively,

while the release times and deadlines are exactly the same as

the two flows. Using the Optimal-Schedule algorithm (known

as the YDS algorithm according to the authors’ initials), the

two jobs will be processed at the same speed of 8+6
√
2

3 in time

interval [1, 4]. As a result, the objective value in the optimal

schedule for this instance is exactly the same as the minimum

Φ in our problem while the structure of the solution is also the

same. Using this observation, we provide an optimal algorithm

for solving the DCFS problem based on the YDS algorithm.

We first construct from the DCFS problem a variant of the

SS-SP problem by introducing a virtual weight w′i = wi ·
(|Pi|)1/α for each flow ji ∈ J . First of all, we present some

definitions which are extended from [18].

Definition 1. The intensity of an interval I = [a, b] on a link
e is defined by

δ(I, e) =

∑
[ri,di]⊆[a,b]∧ji∈Je

w′i
a ∼ b

(7)

Algorithm 1 Most-Critical-First
Input: data center network G = (V, E), set of flows Je for

e ∈ E and virtual weights w′i for each flow

Output: transmission rate si and transmission time interval

[r′i, d
′
i] for each flow ji ∈ J

1: while ∃e ∈ E ,Je 
= ∅ do
2: Find the critical interval I∗ and the critical link e. The

flows in this interval can be represented by J ∗ =
{ji | [ri, di] ⊆ I∗ ∧ e ∈ Pi} and without loss of

generality,

I∗ = [a, b] = [ min
ji∈J ∗

ri, max
ji∈J ∗

di].

3: Schedule the flows in J ∗ with the Earliest Deadline

First (EDF) policy using transmission rate

si =

∑
ji∈J ∗ w′i

(|Pi|)1/α(a ∼ b)

for each flow ji ∈ J ∗. The transmission time interval

[r′i, d
′
i] is also determined.

4: for ji ∈ J ∗ do
5: Je ← Je \ ji for e ∈ Pi.

6: For e ∈ Pi, mark the time interval [r′i, d
′
i] as unavail-

able on link e.

7: end for
8: end while

where a ∼ b denotes the available time in interval [a, b].

Intuitively, the following inequality has to be satisfied,∫ b

a

xe(t)dt/(a ∼ b) ≥ δ(I, e), (8)

which means that δ(I, e) is a lower bound on the average

transmission rate of link e in any feasible schedule over the

interval [a, b].

Definition 2. If an interval I∗ = [a, b] maximizes δ(I∗, e)
for any e ∈ Ea, we call I∗ a critical interval and e is the
corresponding critical link.

Now we present the main algorithm that generates optimal

schedules greedily by computing critical intervals iteratively.

The pseudo-code of the algorithm Most-Critical-First is

shown in Algorithm 1. The following theorem proves that

a critical interval will determine a segment of the optimal

schedule.

Theorem 1. Let I∗ be a critical interval and e be the
corresponding critical link, algorithm Most-Critical-First can
guarantee that the energy consumed by routing the flows in
J ∗ is optimal.

Proof: Denoting the transmission rate for each flow ji ∈
J ∗ as si, the total energy consumed by routing the flows in

J ∗ is expressed by

Φg(J ∗) =
∑
ji∈J∗

|Pi| × wi × sα−1
i . (9)
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According to the second constraint in program (P1) we have∑
ji∈J ∗

wi

si
− (a ∼ b) ≤ 0. (10)

It is clear that in the optimal schedule, the above inequality is

exactly an equality because of Lemma 2. Then, Φg(J ∗) can

be minimized by using the method of Lagrange multipliers.

By introducing a Lagrange multiple λ, we construct a function

L(s1, s2, . . . , s|J∗|, λ) = Φg(J ∗) + λ(
∑

ji∈J ∗

wi

si
− (a ∼ b)).

(11)

By setting �L(s1, s2, . . . , s|J∗|, λ) = 0, we have

(|P1|)1/α s1 = . . . =
(
|P|J ∗||

)1/α
sn. (12)

This is equivalent to solving an instance of the SS-SP problem

as we explained in Example 1, where we treat each flow as a

job with weight w′i = (|Pi|)1/αwi. Using Theorem 1 provided

in [18], we set the processing speed of all the jobs to the same

value of
∑

ji∈J ∗ w′i/(a ∼ b), which will give the optimal

energy consumption for the SS-SP problem, as well as our

problem. That is, Φg(J ∗) is minimized by setting

(|P1|)1/α s1 = . . . =
(
|P|J ∗||

)1/α
sn =

∑
ji∈J ∗ w′i
(a ∼ b)

(13)

which is reflected in the algorithm.

Actually, algorithm Most-Critical-First solves a variant

of the SS-SP problem based on the YDS algorithm. Conse-

quently, the following result follows quickly from Theorem 1.

Corollary 1. The schedule produced by algorithm Most-
Critical-First is optimal to the DCFS problem.

The time complexity of algorithm Most-Critical-First is

bounded by O(n2|V|). Note that the optimality of this algo-

rithm is maintained based on the assumption that data in flows

is routed exclusively through virtual circuits. We now show

how to extend it to a packet-switching network: we assign a

unique priority for all the packets from each flow according

to the flow’s starting time r′i. That is, a flow ji with a smaller

r′i will have a higher priority. This priority information can

be encapsulated into the header of each packet and links will

schedule those packets according to their priorities.

IV. DEADLINE-CONSTRAINED FLOW SCHEDULING AND

ROUTING

In this section, we discuss the DCFSR problem. We aim

at exploring the most energy-efficient scheduling and routing

scheme for a given collection of flows. This problem is much

harder than DCFS as we have to decide also the routing path

for each flow, as well as the transmission rate.

A. Problem Formulation

We observe that once we have the routing paths for all

flows determined, finding the transmission rate for each flow

is then the DCFS problem which can be optimally solved by

algorithm Most-Critical-First. Let Pi denote the routing path

for flow ji. Keeping the notation we used before, the DCFSR

problem can be formalized by the following program.

(P2) minΦf

subject to ∫ di

ri

si(t)dt ≥ wi ∀ji ∈ J

si(t) ≤ xe(t) ∀e ∈ Pi

0 < xe(t) ≤ C ∀e ∈ E
si(t) : flow conservation

The first constraint represents that each flow has to be finished

before its deadline. The second constraint means that the

transmission rate of the flow that is being processed on a link

e cannot exceed the operation rate of that link, while the third

one represents that the operation rate of a link has to be larger

than zero and no larger than the maximum operation rate C.

The flow conservation in the last constraint forces that Pi is

a path connecting source pi and destination qi of flow ji.

B. Complexity and Hardness Results

First, we provide the following definition and lemma as

preliminaries based on our power consumption model.

Definition 3. The power rate of a link e (xe > 0) is defined
as the power consumed by each unit of traffic, i.e., f(xe)/xe.

It can be observed that as long as the power rate of every

link is minimized, the total power consumption of the network

will be optimal. To minimize the power rate of a link, we show

the following lemma.

Lemma 3. Ideally, the optimal operation rate Ropt for a link

is given by Ropt =
(

σ
μ(α−1)

)1/α

.

Note that this operation rate is optimal in theory but is not

always achievable in practice, as it can happen that Ropt > C.

In general, we can prove that the decision version of DCFSR

is NP-complete by providing the following theorem.

Theorem 2. Given a certain amount of energy Φ0, finding a
schedule S for DCFSR such that Φ(S) ≤ Φ0 is NP-complete.

Proof: This can be proved by a simple reduction from

the 3-partition problem which is NP-complete [19]. Suppose

we are given an instance of the 3-partition problem with a set

A of 3m integers a1, a2, . . . , a3m where
∑3m

i=1 ai = mB and

ai ∈ [B/4, B/2]. The problem is to decide whether A can be

partitioned into m disjoint subsets, i.e.,A = A1∪A2∪. . .∪Am

and Ai ∩ Aj = ∅ for any i, j ∈ m, such that every subset

Ai consists of 3 integers and
∑

a∈Ai
a = B. Based on this

3-partition instance, we construct an instance of DCFSR as

follows: we are given a network where two nodes (denoted as

src and dst) are connected in parallel by k (k >> m) links.

Assume we are given a set J of 3m flows each of which has

an amount ai (i ∈ [1, 3m]) of data needed to be transmitted

from src to dst on the network. All the flows arrive at the

same time and the data transmission has to be finished in one
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unit of time. We assume B < C and σ = μ(α − 1)Bα, i.e.,

Ropt = B and we set Φ0 = m · αμBα. We will show that

there is a schedule S such that Φ(S) ≤ Φ0 if and only if A
can be partitioned in the way as in the optimal solution of the

3-partition instance.
On the one hand, if there exists a partition for the 3-partition

instance, we have a solution S for the DCFSR instance where

the flows are transmitted by m links each with an operation

rate B according to the partition and the energy consumption

in this solution is Φ(S) = m ·αμBα. According to Lemma 3,

this solution is optimal since the power rate for each link in this

solution is optimal. Hence, it satisfies that Φ(S) ≤ Φ0. On the

other hand, if we obtain a solution S for the DCFSR instance

such that Φ(S) ≤ Φ0. It can then be derived that exactly

m links will be used and each link will use an operation

rate B. Otherwise, the total energy consumption Φ(S) will

be larger than Φ0 as the average power rate of the used links

is larger than f(B)/B, so Φ(S) > f(B)/B ·mB = m·αμBα.

Accordingly, we can construct a partition for the 3-partition

instance. In a nutshell, finding a partition for 3-partition is

equivalent to finding a solution S for DCFSR such that

Φ(S) ≤ Φ0.
The above reduction is based on the assumption that Ropt <

C, which is not necessarily true in reality. However, in the case

Ropt > C, we just set B = C and Φ0 = m(σ + μCα), and

the same reduction can be built in a similar way.
Then, it follows directly that

Corollary 2. Solving the DCFSR problem is strongly NP-hard.

As a result, the DCFSR problem can only be solved by

approximating the optimum. When we say that an algorithm

approximates DCFSR with performance ratio γ, it means that

the energy consumption in the solution produced by this al-

gorithm is at most γ times the minimum energy consumption.

Given these, we aim at designing an algorithm to approximate

the optimum with ratio γ as small as possible. Unfortunately,

for the case Ropt > C, which is likely to be the real situation

as justified in [5], the following theorem shows that γ cannot

be as small as we want since there is a lower bound for it.

Theorem 3. There exists an instance of problem DCFSR such
that no approximation algorithm can guarantee a performance
ratio smaller than 3

2

(
1 + (2/3)α−1

α

)
unless P=NP.

Proof: We prove this theorem by showing a gap-

preserving reduction from the partition problem which is NP-

complete. Suppose we are given an instance of the partition

problem with a set A of n integers. Assuming
∑

a∈A a = B,

the problem is whether it is possible to find a subset A′ ⊂ A
such that

∑
a∈A′ a = B/2. We now construct an instance of

the DCFSR problem as follows: we consider also the same

network as the one in the previous proof where we assume

m > 2 and the capacity of each link is given by C = B/2.

We are also given a set J of flows each of which requires

to route an amount wi of data from src to dst and wi = A[i]
for ji ∈ J . These flows arrive at the system at the same

moment and have to be accomplished in one unit time. We

denote by Φopt the optimal solution of the DCFSR instance,

which represents the total energy consumed by the active links

for tranmisstting the flows. Then, the following properties are

preserved.

∃A′ ⊂ A,
∑
a∈A′

a = B/2 =⇒ Φopt = 2b+ 2μCα,

�A′ ⊂ A,
∑
a∈A′

a = B/2 =⇒ Φopt ≥ 3b+ 3μ(2C/3)α.

Comparing both optimal solutions, we obtain a ratio γ where

γ =
3σ + 3μ (2C/3)

α

2σ + 2Cα
≥ 3μCα(α− 1) + 3μ (2C/3)

α

2μCα(α− 1) + 2μCα

=
3

2

(
1 +

(2/3)α − 1

α

)
(14)

where the inequality is obtained by applying σ ≥ μCα(α−1).
Combining with the two properties we derived, it is easy to

conclude that as long as there is an approximation algorithm

solving DCFSR with a performance ratio better than γ, a

subset A′ in the partition problem can be found such that∑
a∈A′ a = B/2. However, it is well known that the partition

problem is NP-complete and cannot be solved by any polyno-

mial time algorithm optimally. As a result, no algorithm can

approximate DCFSR with a performance ratio better than γ
unless P=NP.

This directly implies that the DCFSR cannot have Fully

Polynomial-Time Approximation Schemes (FPTAS) under the

conventional assumption that P
=NP [20]. In the next section,

we will provide an efficient approximation algorithm.

V. AN APPROXIMATION ALGORITHM FOR DCFSR

We present an approximation algorithm for DCFSR in

this section. This algorithm is based on a relaxation and

randomized rounding based process. We show by both analysis

and numerical results that this approximation algorithm can

guarantee a provable performance ratio.

A. The Algorithm

We first provide the following preliminaries. We define T =
{t0, t1, . . . , tK} to be the set of release times and deadlines of

all the flows such that tk1
< tk2

for any 0 ≤ k1 < k2 ≤ K. It

is clear that t0 = minji∈J {ri} and tK = minji∈J {di}. We

denote by Ik the time interval [tk−1, tk] for 1 ≤ k ≤ K, by

|Ik| the length of interval Ik and by βk = |Ik|/(tK − t0) the

fraction of time that interval Ij takes from the whole time of

interest. We also define λ = (tK − t0)/mink |Ik|.
We first relax the problem by making the following trans-

formations such that the resulted problem can be optimally

solved.

• The traffic load of flow ji is given by its density Di.

Flows can be routed simultaneously on any link;

• Each flow can be routed through multiple paths;

• The links in the network can be flexibly turned on and

off at any moment.

We observe that the resulted problem can be decomposed into

a set of subproblems in each interval Ik as in each interval Ik,
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the traffic flows on the network are invariable. Actually, each

such subproblem in an interval is a fractional multi-commodity

flow (F-MCF) problem that is precisely defined as follows.

Definition 4 (F-MCF). For every active flow ji ∈ J that
satisfies Ik ⊆ Si, a flow of traffic load Di has to be routed
from pi to qi. The objective is to route these flows on the
network such that the total cost on the links is minimized,
given cost function f(·) for every link.

It is known that the F-MCF problem can be optimally

solved by convex programming. Consequently, we obtain the

fractional solution y∗i,e(k) which represents the proportion of

the amount of the flow ji that goes through link e in interval

Ik. Absolutely, this solution is not feasible to the original

DCFSR problem. Now we aim to transform this infeasible

solution into a feasible one.

The transformation is accomplished by a randomized round-

ing process. Before that, we extract candidate routing paths

for each flow following the Raghavan-Tompson [21] manner

as follows. For each interval Ik (1 ≤ k ≤ K), we decompose

the fractional solution y∗i,e(k) into weighted flow paths for

each flow ji via the following procedure. We repeatedly

extract paths connecting the source and destination of each

flow ji from the subgraph defined by links e for which

y∗i,e(k) > 0. For each extracted path P , we assign a weight

wP = mine∈P y∗i,e(k) for P and the value of y∗i,e(k) on every

link in P is reduced by wP . This path extracting process

will terminate when every y∗i,e(k) becomes zero, which is

guaranteed by the flow conservation constraint. As a result, we

obtain a set Qi(k) of paths for flow ji in interval Ik. We repeat

this process for every interval and denote Qi = ∪1≤k≤KQi(k)
as the set of all the candidate paths for flow ji without

duplication. Note that a path P may be used in more than

one interval. We denote by wP(k) the corresponding weights

of P in different intervals. If P is not used in interval Ik, then

wP(k) = 0.

Now we show how to choose a single path for each flow ji
from the candidate paths Qi. For each path P ∈ Qi, we assign

a new weight w̄P where w̄P =
∑

k wP(k) · |Ik|/(di−ri). The

routing path Pi for flow ji is then determined by randomly

choosing a path P from Qi using weight w̄P as the probability

at which path P will be chosen. This path choosing process

will be repeated for every flow. Consequently, a single path

Pi will be determined for each flow ji ∈ J and the packets

from this flow will be routed through only this path.

Finally, we choose a transmission rate for each flow in

every interval Ik. Denoting also Je(k) the flow that will be

transmitted on link e in interval Ik, the transmission rate for

every flow ji ∈ Je(k) will be set to
∑

ji∈Je(k)
Di and data

packets from each flow in Je(k) will be forwarded on e using

the EDF policy which we have introduced before.

The whole process of the algorithm is shown in Algorithm 2.

We have to mention that the proposed algorithm does not guar-

antee the maximum operation rate constraint. However, we

observe that the probability that many flows are simultaneously

requested to be forwarded on a designated link in the proposed

Algorithm 2 Random-Schedule
Input: data center network G = (V, E), set of flows J
Output: Routing path Pi for flows ji ∈ J and transmission

rate si(t) for t ∈ [ri, di]

1: Transform the DCFSR problem into a multi-step fractional

multi-commodity flow problem by relaxing the constraints

2: for Ik ∈ {I1, . . . , IK} do
3: Solve the fractional multi-commodity flow problems by

convex programming, obtaining y∗i,e(k)
4: Extract candidate paths for each flow, denote as Qi(k)

and a weight wP(k) for each P ∈ Qi(k)
5: end for
6: Qi = ∪1≤k≤KQi(k) for ji ∈ J
7: w̄P =

∑
k wP(k) · |Ik|/(di − ri) for P ∈ Qi

8: for ji ∈ J do
9: Randomly choose a path Pi from Qi using weight w̄P

as the probability

10: end for
11: Route the packets from all the flows on link e in interval

Ik using the EDF policy. The transmission rate for flow

ji on link e in interval Ik is
∑

ji∈Je(k)
Di.

algorithm is very low as the probability for choosing a link for

a flow is derived from the fractional solution which has the

maximum operation rate constraint considered. Nevertheless,

we can always repeat the randomized rounding process until

we obtain a feasible solution. Now we show that

Theorem 4. The deadline of every flow ji ∈ J can be met in
the solution produced by algorithm Random-Schedule.

Proof: As we allow preemption for each flow, it suffices

to show that all the data that arrives on a link e in every interval

Ik ⊆ Sj can be transmitted by the end of this interval. Let

us focus on one arbitrary link e and an arbitrary interval Ik.

The total amount of data that has to be transmitted through

e in this interval is given by
∑

ji∈Je(k)
(Di · |Ik|). As the

transmission rate for every flow in Je(k) is
∑

ji∈Je(k)
Di,

the total time that is needed for accomplishing all the flows

is equal to
∑

ji∈Je(k)
(Di · |Ik|) /

∑
ji∈Je(k)

Di = |Ik|. As a

result, all the data in this interval can always be transmitted

no matter what kind of scheduling policy is used. However,

we use the EDF policy because it can significantly reduce the

frequency of changing the transmission rates of links.

B. Performance Analysis

We now analyze the approximation performance of the

proposed algorithm. Our results are based on the main results

in [16] where the authors also used a rounding process to

approximate the multi-commodity flow problem with f(·).
The biggest difference compared with that work is that the

rounding process we propose in this paper is responsible for

minimizing the number of used links and thus has to guarantee

the same path for each flow in every interval. That is, we aim

at solving a multi-step MCF problem. We base our proof on
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the following result and we only show the difference from it.

Theorem 5 ([16]). For nonuniform demands, randomized
rounding can be used to achieve a O

(
K + logα−1 D

)
−

approximation for MCF with cost function f(·), where K is
the total number of demands and D is the maximum demand
among all the demands.

Theorem 6. Algorithm Random-Schedule can achieve a
O

(
λα(n2 logD)α−1

)
-approximation for the DCFSR problem

with power function g(x) = μxα, where D = maxji∈J Di.

Proof: We follow the process of the proof for Theorem 5.

First, we assume unit flows, i.e., wi/(di− ri) = 1 and we use

power consumption function h(x) = max{μx, μxα}. Note

here that we have E(x̂e(l)) ≤ λ
∑

k βkx
∗
e(k) for any 1 ≤ l ≤

K. We then consider the following two cases:

Case 1:
∑

1≤k≤K βkx
∗
e(k) ≤ 1, we have,

E(
∑

1≤l≤K

g(x̂e(l))|Il|) ≤
∑

1≤l≤K

γ1h(E(x̂e(l)))|Il|

≤ γ1λ(tK − t0)
∑

1≤k≤K

βkμx
∗
e(k)

= γ1λ
∑

1≤k≤K

h(x∗e(k))|Ik| (15)

= γ1λ
∑

1≤k≤K

∑
ji∈J

h(x∗i,e(k))|Ik|,

where the first inequality follows from the result in [16].

Case 2:
∑

1≤k≤K βkx
∗
e(k) > 1, we have,

E(
∑

1≤l≤K

g(x̂e(l))|Il|) ≤
∑

1≤l≤K

γ2h(E(x̂e(l)))|Il|

≤ γ2λ
αKα−1(tK − t0)

∑
1≤k≤K

βα
k μ(x

∗
e(k))

α

≤ γ2λ
αK

∑
1≤k≤K

h(x∗e(k))|Ik| (16)

≤ 2γ2λ
αn2(α−1)

∑
1≤k≤K

∑
ji∈J

h(x∗i,e(k))|Ik|,

where the first inequality follows also from the result in [16].

The second inequality and the last inequality follow from the

property that (x1 + . . . + xm)α ≤ mα−1(xα
1 + . . . + xα

m)
while in the last inequality, we also apply K ≤ 2n. The third

inequality follows due to βk ≤ 1 for 1 ≤ k ≤ K.

It can be observed that when the power consumption

function is given by g(x) = μxα,
∑

ji∈J h(x∗i,e(k))|Ik| is

a lower bound for the optimal energy consumption as it is the

total energy consumed when the smallest transmission rate for

each flow is used and also each flow can be routed through

multiple paths. Consequently, we have

E(
∑

1≤l≤K

f(x̂e(l))|Il|) ≤ O
(
λαn2(n−1)

)
· Φopt, (17)

where the expression on the left side is the expectation of

the energy consumption in the solution produced by Al-

gorithm Random-Schedule. Using Markov’s inequality, the

probability that the energy consumption is more than c·O(n2)·
Φopt is no more than 1/c. This result then can be extended

to nonuniform flows by introducing an extra factor logα−1 D,

which has also been shown in [16].

Theorem 7. Algorithm Random-Schedule can solve
the DCFSR problem with the power function given in
Eq. 1 while guaranteeing an approximation ratio γ of
O

(
λα(n2 logD)α−1

)
.

Proof: We also assume power consumption function f(x)
for the DCFSR problem and solve it with the proposed algo-

rithm Random-Schedule. In the obtained fractional solution

for the multi-step F-MCF problem, we use z∗e (k) ∈ {0, 1}
to indicate whether a link e is chosen or not in interval Ik.

We denote by ẑe an indicator in the produced solution where

ẑe = 1 if e is used in at least one of the intervals; ẑe = 0
otherwise. Then, we have

σ(tK − t0)E(ẑe) = σ(tK − t0)

(
1−

∏
k

(1− E(ẑe(k)))

)

≤ σ(tK − t0)
∑
k

E(ẑe(k))

= σ(tK − t0)
∑
k

⎛
⎝1−

∏
ji∈J

(1− y∗i,e(k))

⎞
⎠

≤ σ(tK − t0)
∑
k

∑
ji∈J

y∗i,e(k)

≤ σ(tK − t0)
∑
k

nz∗e (k) (18)

≤ nλ
∑
k

z∗e (k)σ|Ik|,

where the third inequality follows from y∗i,e(k) ≤ z∗e (k) and

the last inequality follows from mink |Ik| ≤ |Ik| for any

1 ≤ k ≤ K. It can be observed that
∑

k z
∗
e (k)σ|Ik| is a lower

bound for the optimal idle energy consumption by link e since

z∗e (k) is derived from the M-MCF problem which allows the

links to be turned on and off freely at any moment. Combin-

ing all these together, we conclude that algorithm Random-
Schedule can produce a O

(
λα(n2 logD)α−1

)
-approximation

for the DCFSR problem.

C. Numerical Results

We now briefly describe simulation results that illustrate

the approximation performance of the proposed algorithm. We

build a simulator with the Random-Schedule implemented in

Python. We use the power consumption functions x2 or x4 and

we choose a data center network topology which consists of

80 switches (with 128 servers connected). We consider [1,

100] as the time period of interest and as we assume no

prior knowledge on the flows, we select release times and

deadlines of flows randomly following a uniform distribution

in [1,100]. The number of flows ranges from 40 to 200 and the

amount of data from each flow is given by a random rational

number following normal distribution N (10, 3). We compare
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Figure 2. The approximation performance of Random-Schedule.

three values of interest: lower bound (LB) for the optimum

(solution given by y∗i,v(k)), Shortest-Path (SP) routing plus

Most-Critical-First (MCF), and Random-Schedule (RS). As

SP is usually adopted, SP+MCF can give the lower bound

of the energy consumption by SP routing, which represents

the normal energy consumption in data centers. All of the

values are normalized by the lower bound for the optimum

and are averaged among 10 independent runs. The simulation

results are illustrated in Fig. 2. As expected, RS outperforms

SP+MCF to a large extent. Moreover, we notice that with the

increase of the number of flows, the approximation ratio of RS

converges while the approximation ratio of SP+MCF keeps

an increasing trend. This confirms that combining routing and

scheduling for flows can provide substantial improvements on

the energy efficiency in data center networks.

This simulation serves merely as a primitive validation of

the performance of the algorithm. Due to the space limit, we

leave more exhaustive evaluation and further implementation

as future work.

VI. RELATED WORK

This section summarizes some related work on the problem

of improving the energy efficiency of DCNs, as well as the

network scheduling and routing problem.

A. Energy-Efficient Data Center Networks

There has been a large body of work on improving the

energy efficiency in DCNs. In general, they can be classified

into two categories: The first line of work is designing new

topologies that use fewer network devices while aiming to

guarantee similar connectivity thus performance, such as the

flatted butterfly proposed by Abts et al. [22] or PCube [23],

a server-centric network topology for data centers, which can

vary the bandwidth availability according to traffic demands.

The second line of work is optimizing the energy efficiency by

traffic engineering, i.e., consolidating flows and switching off

unnecessary network devices. The most representative work

in this category is ElasticTree [1], which is a network-wide

power manager that can dynamically adjust a set of active

network elements to satisfy variable data center traffic loads.

Shang et al. [2] considered saving energy from a routing

perspective, routing flows with as few network devices as

possible. Mahadevan et al. [24] discussed how to reduce the

network operational power in large-scale systems and data

centers. The first rate-adaptation based solution to achieve

energy efficiency for future data center networks was provided

by [25]. Vasic et al. [4] developed a new energy saving scheme

that is based on identifying and using energy-critical paths.

Recently, Wang et al. [3] proposed CARPO, a correlation-

aware power optimization algorithm that dynamically consol-

idates traffic flows onto a small set of links and switches

and shuts down unused network devices. Zhang et al. [26]

proposed a hierarchical model to optimize the power in DCNs

and proposed some simple heuristics for the model. In [27], the

authors explored the problem of improving the network energy

efficiency in MapReduce systems and afterwards in [28] they

proposed to improve the network energy efficiency by joint

optimizing virtual machine assignment and traffic engineering

in data centers. Then, this method was extended to a general

framework for achieving network energy efficiency in data

centers [5]. In [29], the authors proposed to combine pre-

emptive flow scheduling and energy-aware routing to achieve

better energy efficiency. But performance guarantee was not

considered. In a following work [30], they considered greening

data center networks by using a throughput-guaranteed power-

aware routing scheme. To the best of our knowledge, the

present paper is among the first to address the energy efficiency

of DCNs from the aspect of scheduling and routing while

guaranteeing the most critical performance criterion in DCNs

- meeting flow deadlines.

B. Network Scheduling and Routing

There have been a few works that have investigated the

problem of job scheduling with deadlines in a multi-hop

network. With known injection rate, a given deadline and

fixed routes, the problem of online scheduling of sessions has

been investigated by [31], where they first gave a necessary

condition for feasibility of sessions and gave an algorithm

under which with high probability, most sessions are scheduled

without violating the deadline when the necessary condition

for feasibility is satisfied. In [32], the authors studied online

packet scheduling with hard deadlines in general multihop

communication networks. The algorithm they proposed gives

the first provable competitive ratio, subject to hard deadline

constraints for general network topologies. However, they

didn’t consider optimizing for energy efficiency.

Packet scheduling and routing for energy efficiency in

general networks has also been well studied. In [16] and

[33], the authors investigated to optimize the network energy

efficiency from the aspect of routing and scheduling under

continuous flow (transmission speed for each flow is given by

a constant), by exploiting speed scaling and power-down strat-

egy, respectively. Andrews et al. [34] then proposed efficient

packet scheduling algorithms for achieving energy efficiency

while guaranteeing network stability. In [35], they also pro-

vided efficient packet scheduling algorithms for optimizing the

tradeoffs between delay, queue size and energy.
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Our approach has some fundamental differences with all the

aforementioned solutions. Firstly, we combine speed scaling

and power-down strategies for network devices in a unified

model. Secondly, we carry out optimization from the gran-

ularity of flow instead of the granularity of packet and we

aim at guaranteeing flow deadlines. Lastly, we investigate the

problem of achieving energy efficiency by combining both

flow scheduling and routing where we have to decide not only

the routing path and schedule, but also the transmission rate

for each flow.

VII. CONCLUSIONS

In this paper, we studied flow scheduling and routing

problem in data center networks where the deadlines of flows

were strictly constrained and the objective was to minimize

the energy consumption for transmitting all of the flows. The

key observation in this work was that energy efficiency cannot

be separately considered regardless of network performance

being meeting flow deadlines the most critical requirement for

it. We focused on two general versions of this problem with

only scheduling and both routing and scheduling respectively.

We introduced an optimal combinatorial algorithm for the

version with only flow scheduling and devised an efficient

approximation algorithm for the version with both routing and

scheduling for flows, obtaining a provable performance ratio.

With the proposed algorithms, we were able to achieve the

aforementioned objective.
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