
Sponge: Inference Serving with Dynamic SLOs Using In-Place
Vertical Scaling

Kamran Razavi∗
Technical University of Darmstadt

Saeid Ghafouri∗
Queen Mary University of London

Max Mühlhäuser
Technical University of Darmstadt

Pooyan Jamshidi
University of South Carolina

Lin Wang
Paderborn University

ABSTRACT
Mobile and IoT applications increasingly adopt deep learning
inference to provide intelligence. Inference requests are typ-
ically sent to a cloud infrastructure over a wireless network
that is highly variable, leading to the challenge of dynamic
Service Level Objectives (SLOs) at the request level.
This paper presents Sponge, a novel deep learning in-

ference serving system that maximizes resource efficiency
while guaranteeing dynamic SLOs. Sponge achieves its goal
by applying in-place vertical scaling, dynamic batching, and
request reordering. Specifically, we introduce an Integer Pro-
gramming formulation to capture the resource allocation
problem, providing a mathematical model of the relationship
between latency, batch size, and resources. We demonstrate
the potential of Sponge through a prototype implementation
and preliminary experiments and discuss future works.

CCS CONCEPTS
• Computer systems organization → Cloud computing;
Reconfigurable computing;

KEYWORDS
Inference Serving Systems, Vertical Scaling

1 INTRODUCTION
Within the domain of mobile and IoT applications, cloud-
based Deep Learning (DL) inference plays an important role,
with user satisfaction and resource efficiency serving as key
∗Equal Contribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 979-8-4007-0541-0/24/04. . . $15.00
https://doi.org/10.1145/3642970.3655833

performance indicators [1, 25, 26]. Since most DL-powered
applications involve user interaction, they must comply with
strict requirements on the inference latency, a.k.a. meeting
the Service Level Objectives (SLOs) of the inference request.
On the other hand, the resources needed to provision such a
DL inference serving system should be minimized to reduce
the cost [10, 17, 18, 23, 28, 31].

SLOs are comprehensively defined from end to end, with
the variable network time required for transferring user re-
quests and input data introducing dynamic time budgets
for serving inference requests. Therefore, when setting ex-
pectations for mobile and IoT applications, it is important
to define SLOs that cover both the network and computing
aspects from start to finish. Ignoring the time it takes for
information to travel through the network, inference serv-
ing systems may find themselves with not enough time to
handle requests properly, resulting in SLO violation. Hence,
resource allocation must consider a variety of time budgets
of a single user using the same application. Managing this
dynamism poses a critical challenge for inference serving
systems, where the effective handling of diverse SLOs and
the consideration of fluctuating network conditions are im-
perative to ensure the fulfillment of end-to-end SLOs.
Existing inference serving systems mostly consider only

the inference part with static SLOs, i.e., all requests have
the same SLOs when they reach computing units. Their
horizontal scaling-based approach cannot incorporate di-
verse SLOs at the request level [10, 12, 18]. For example,
FA2 [28] adjusts the number of minimum-resource instances
to achieve the highest resource efficiency (throughput). More-
over, bringing new instances in horizontal scaling ties with
the cold-start issue (a few seconds [15, 29]), which cannot
cope with the dynamically changing network conditions. Jel-
lyfish [27], on the other hand, aims to guarantee end-to-end
SLOs while achieving high inference accuracy by using pre-
loaded model-switching and trading accuracy for latency,
which may not always be possible for all applications.

We propose a new system, Sponge, aiming to address this
research gap. Our main insight is that the combination of in-
place vertical scaling, dynamic batching, and request reorder-
ing is a powerful tool to combat request-level dynamism. In

https://doi.org/10.1145/3642970.3655833

particular, the new in-place vertical scaling feature of Kuber-
netes [3] allows developers to resize CPU/memory resources
allocated to containers without restarting them, eliminat-
ing the cold-start issues of vertical scaling, while request
reordering allows for requests with a lower remaining time
budget to be processed earlier. At the same time, dynamic
batching increases the system utilization to further reduce
the needed computing resources. We formulate the problem
and propose a method for inference serving with dynamic
SLOs. Sponge relies on three adaptation strategies to capture
per-request dynamic SLOs: 1 in-place vertical scaling to
change the computing resources of DL models in spot, 2
request reordering to prioritize close-to-deadline requests,
and 3 dynamic batching to increase the utilization of the DL
models. More specifically, Sponge achieves dynamic SLOs
guarantee and high resource utilization by first providing a
mathematical relation between vertical scaling with batching
and processing latency of the DL model using historical data
and then designing a request-based mathematical modeling
of the entire framework to guarantee SLOs of all requests
while minimizing the resources. Furthermore, we propose
a simple algorithm for small cases to iterate over all possi-
ble configurations and find optimal resource and batch size
allocations. The preliminary experimental results show a
reduction in over 15× of the SLO violation compared to the
existing approaches.

Sponge currently does not consider pipelines of DLmodels.
Complex applications such as intelligent virtual assistants
consist of multiple DL models, coordinated with a Directed
Acyclic Graph (DAG), collaboratively generating a meaning-
ful output. Such applications require amore intricate solution
due to data dependencies among DL models, resulting in a
strong coupling of scaling decisions for different DL models.
Furthermore, vertical scaling sustains workloads to some ex-
tent due to the DL model parallelization level and availability
of computing resources in a sine node. Therefore, multiple
instances of the same DL model (horizontal scaling) may
need to reside in different computing nodes to support the
incoming workload. We consider these directions as future
works of Sponge.

This paper contributes by discussing the challenges of
dynamic SLOs on DL inference serving systems. Then, we

• present the design of Sponge, a new DL inference serv-
ing system for dynamic SLOs based on the idea of
in-place vertical scaling, request reordering, and dy-
namic batching.
• provide an Integer Programming formulation to encap-
sulate the problem of dynamic SLOs by introducing
a mathematical modeling of the relation between la-
tency, batch, and CPU in inference serving systems.

0.5

4.0

7.5

Th
ro

ug
hp

ut
 (M

B/
s)

0 100 200 300 400 500 600
Time (s)

0.0

0.5

1.0

R
em

ai
ni

ng
 S

LO
 (s

)

100 KB
200 KB
500 KB
Predefined SLO

Figure 1: Bandwidth measurements in 4G networks
provided by [34]. The bandwidth varies from 0.5MB/s
to 7MB/s in a 10-minute range (top figure). The below
figure demonstrates the remaining SLO for processing
when the user sends a 100 KB, a 200 KB, or a 500 KB
image over the same network’s bandwidth.• build a prototype system for Sponge 1 and evaluate it

using 4G/LTE bandwidth logs datasets. Sponge reduces
the SLO violation by over 15× compared to a horizontal
state-of-the-art autoscaler.

2 MOTIVATION
In this section, we first discuss the challenges raised by vari-
able networks and then identify the challenges in efficient
in-place vertical scaling.

2.1 Dynamic SLO
Fluctuations in network bandwidths, e.g., caused by user
mobility, are inevitable [8, 14], as illustrated in Figure 1 (top).
This variability influences the transmission overhead associ-
ated with sending data across the network for remote pro-
cessing, leading to a reduction in the time budget available
for server-side deployed services, as depicted in Figure 1
(bottom). Consequently, service providers are compelled to
account for network latency to ensure compliance with the
end-to-end latency requirements specified in the SLO.
We use a simple human detection model trained on the

ResNet architecture to motivate this work, where it detects
a human in an image of 200 KB while the requests are being
sent on a dynamically changing network (e.g., 4G) under a
static workload of 100 requests per second with the SLO of
1000 ms (similar conditions to Figure 1). Table 1 shows the
execution latency of the model with different allocated CPU
cores and batch sizes when considering the SLO. For calcu-
lating the required number of instances per instance type
1https://github.com/saeid93/sponge

https://github.com/saeid93/sponge

Table 1: Execution latency (P99) of a ResNet model (hu-
man detector) with different CPU cores using different
batch sizes while guaranteeing SLO of 1000 ms under
the workload of 100 RPS.
Cores Batch Latency (ms) Throughput (RPS) Total Cores

1 1 55 18 × 6 = 108 1 × 6 = 6
1 2 97 20 × 5 = 100 1 × 5 = 5
2 4 94 40 × 3 = 120 2 × 3 = 6
4 8 92 80 × 2 = 160 2 × 4 = 8
8 4 37 108 × 1 = 108 1 × 8 = 8
8 8 62 128 × 1 = 128 1 × 8 = 8

(different core numbers), we divide the incoming workload
by the throughput of an instance. Following the approach in
FA2 [28], where they use one-core instances, we need five
instances to process a batch of 2 requests per 97 ms, which
means that we can process a batch of 10 requests, or 20 re-
quests per second (RPS), over a 1000 ms SLO. This approach
works perfectly if the network is static. However, if the net-
work latency takes up to half of the SLO, FA2 will drop all the
requests, as there is no possible solution in their approach
with one-core instances, even with the smallest batch size.
Furthermore, even if the network latency takes just 40 ms,
the system needs to bring up a new instance to avoid drop-
ping requests or violating the SLO, meaning that the system
will suffer from the cold start of a new instance until the
system stabilizes again. Alternatively, meeting the SLO in
the context of a dynamically changing network bandwidth
could have been achieved through the dynamic modification
of computing resources within the instance (in-place vertical
scaling). In the same scenario, if we had up to 600 ms of
network delay, we could still serve the requests without vio-
lating or dropping any request by changing the instance core
from 1 core to 8 cores with a batch size of 4. InfAdapter [31]
employs profiling data to determine CPU core allocation for
DL models. For instance, under a workload of 100 RPS, the
model’s computing resources and batch size remain static.
However, when faced with changes in the SLO, it switches
to a different model variant with predefined CPU core alloca-
tion, encountering similar challenges as FA2 (cold start and
static CPU core allocation).

2.2 Autoscaling Challenges
Creating an effective in-place vertical scaling system for DL
inference serving is a complex task. Precisely, we pinpoint
the following challenges, which collectively differentiate the
scaling problem in DL inference serving systems from those
examined in other systems.
Dynamic SLO at the request level. In wireless networks
conditions can change over time. This can be due to various

factors, such as changes in network traffic, hardware per-
formance, signal strength, and resource availability [22, 36].
These factors can cause variable delays in network transmis-
sion for inference requests, leading to requests with dynamic
SLOs. Accommodating dynamic SLOs at the request level
requires fine-grained control over resource allocation to en-
sure each request meets its SLO. This level of granularity is
challenging to achieve with vertical scaling since changing
the resources to guarantee one request SLO affects all the
requests’ processing latency in the system.
Batch size. DL inference serving systems commonly utilize
request batching to enhance resource efficiency [9–11, 32].
More precisely, batching can increase throughput as more
tasks or requests can be processed in a given amount of time.
Furthermore, batching can help meet latency constraints
with dynamic batching policies, where batch sizes are deter-
mined online, during runtime, depending on the latency con-
straints of each application [23, 28]. However, it is important
to note that large and small batch sizes can have drawbacks
if not properly managed. Large batch sizes can critically vi-
olate the latency of many requests within a batch, while
small batch sizes could cause excessive queuing and may not
exploit potential opportunities for increased throughput.

In the next section, we provide an in-place vertical-based
autoscaler to capture the discussed challenges by first dis-
cussing how to reconcile vertical scaling and batch size in
the context of inference serving systems, and second, pro-
viding a mathematical formulation to mimic the autoscaling
problem with the consideration of dynamic SLOs.

3 SYSTEM DESIGN
This section provides our solution for inference serving sys-
tems with dynamic SLOs. Our goal is to use minimal re-
sources to provision the DL model with in-place vertical
scaling, request reordering, and dynamic batch sizing while
guaranteeing all the requests’ SLO.

3.1 Overview
Sponge consists of four components as is shown in Figure 2:
Monitoring.Themonitoring component uses Prometheus [7]
to observe the incoming workload to the system. It will mon-
itor the workload destined for the model on a predefined
time interval. Additionally, it receives the end-to-end request
latency from the processing component to calculate the SLO
violation rate and the accuracy of the performance model.
Queuing. The queuing component receives the request from
the user, reorders the request based on the remaining SLO
(Earliest Deadline First (EDF)), and creates a batch with the
given batch size from the solver. In addition, it sends the set of
requests with their communication latency to the optimizer.

Offline Performance
Model Generator

Sponge

Queue
(EDF)

User

Processing
(DL Model)

Scaler

MonitoringOptimizer Adapter

CPU Core
Batch Size

RPS

Results

Remaining SLO

Batched Requests

Requests

Figure 2: An overview of the Sponge architecture. The
monitoring service collects metric data from the DL
model. The queue prioritizes requests according to the
EDF policy. The scaler is responsible for determining
vertical scaling and batch size decisions for the DL
model and adjusting the system accordingly.

Processing. The processing component has the comput-
ing power to execute inferences. It receives batches from
the queue, processes them, and sends them to the user. Fur-
thermore, it sends the statistical data (queuing latency and
processing latency) to the monitoring component.
Scaler. The scaler component first aims to find the vertical
scaling CPU cores and batch size decisions to achieve the
highest resource efficiency while respecting all the request
SLOs in the system by using the workload (reported by the
monitoring component) and the remaining SLOs of all the
requests after being reordered by the queuing component in
the optimizer. Next, its adapter part adjusts the system by
sending a signal to the processing component with the new
CPU core allocation and a signal to the queueing component
with the new batch size configuration.

3.2 Performance Model
For effective decision-makingwithin the solver, Sponge needs
knowledge of the performancemetrics, specifically the through-
put ℎ(𝑏, 𝑐) and latency 𝑑 (𝑏, 𝑐), associated with the DL model.
Previous research has indicated that the performance of DL
inference tends to be highly predictable [11, 18, 23, 35]. We
follow the same line and use profiling data and robust re-
gressions [13] to build a model for any given DL model.
GrandSLAm [11, 23] suggests a linear relationship between
batch size and latency, that is, 𝑙 (𝑏, 𝑐) = 𝛼1 × 𝑏 + 𝛽1, and
FA2 [28] suggests a second-order quadratic polynomial for a
lower total MSE. However, none of the above works consider
changes in the computational resources (e.g., number of CPU

400

800

M
od

el
 L

at
en

cy
 (m

s)

YOLOv5s
Batch Size=1
Batch Size=2
Batch Size=4
Batch Size=8
Predicted Values

1 2 4 8 16
CPU (cores)

0

200

400

M
od

el
 L

at
en

cy
 (m

s)

ResNet18
Batch Size=1
Batch Size=2
Batch Size=4
Batch Size=8
Batch Size=16
Predicted Values

Figure 3: Latency vs. different CPU core allocations and
batch sizes using real and predicted for the YOLOv5n
and ResNet18 DL models.

cores) of the DL models. For simplicity, we use the linear
relation in the current work.

To have a relation between latency and CPU, we use Am-
dahl’s law [2] for latency prediction under a given batch size:

𝐿(𝑏, 𝑐) = 𝛼2

𝑐
+ 𝛽2 (1)

Equation 1 states an inverse relation between the number
of CPU cores and latency if the model can use additional
CPU cores, which is the case in ML models.
On the other hand, the linear relation of batch size and

latency suggests that 𝛼1 and 𝛽1 have inverse relations with
CPU cores, e.g., 𝛼1 = 𝛾1/𝑐 + 𝛿1 and 𝛽1 = 𝜖1/𝑐 + [1 (other-
wise, 𝑙 (𝑏, 𝑐) would become linear in Equation 1). Therefore,
to incorporate computational resources into batch/latency
profiling, we combine the linear relation of batch/latency
and the inverse relation of CPU/latency as follows.

𝑙 (𝑏, 𝑐) =(𝛾1
𝑐
+ 𝛿1) × 𝑏 +

𝜖1

𝑐
+ [1

=
𝛾1 × 𝑏

𝑐
+ 𝜖1

𝑐
+ 𝛿1 × 𝑏 + [1

(2)

Our preliminary evaluation with the data sets profiled
from ResNet18 and YOLOv5n models used in Figure 3 con-
firms that the latency/CPU/batch model in Equation 2 pro-
vides a realistic estimation of latency with different CPU
cores and batch sizes on different DL models. The through-
put of a DL model is directly given as a function of batch
size and CPU cores, e.g., ℎ(𝑏, 𝑐) = 𝑏/𝑙 (𝑏, 𝑐).

Table 2: Notations

Symbol Description

𝑅 Set of all requests
𝑏 Model’s batch size
𝑐 Model’s CPU allocation
𝑐𝑙𝑟 Communication latency associated with 𝑟 ∈ 𝑅
𝑐𝑙𝑚𝑎𝑥 Highest 𝑐𝑙𝑟 in 𝑅

𝑆𝐿𝑂 Pre-defined SLO for 𝑅
𝑙 (𝑏, 𝑐) Processing time of a model with allocation core 𝑐 and

batch size 𝑏
𝑞𝑟 (𝑏, 𝑐) Queuing time of 𝑟 ∈ 𝑅 with allocation core 𝑐 and

batch size 𝑏
ℎ (𝑏, 𝑐) Throughput of a model with allocation core 𝑐 and

batch size 𝑏
_ Request arrival rate

3.3 Problem Formulation
The optimizer generates scaling decisions by solving an op-
timization problem. Now, we provide a formal formulation
for the problem given that the end-to-end latency for a re-
quest is the aggregation of the communication latency (the
time the request takes to be received by the system from the
user device), the queuing (the time the request spends in the
queue before being processed), and the processing latencies
(inference latency) of the request.

Suppose that we are given a model and a set of requests
𝑅 with a predefined SLO. Each request 𝑟 ∈ 𝑅 has com-
munication latency 𝑐𝑙𝑟 . The arrival rate of the application
request is denoted by _. Due to the instability of the net-
work, as we have already discussed in Section 2, we apply
the earliest-deadline-first (EDF) queue (𝑞(𝑏, 𝑐)), similar to
GradnSLAm [23], since request reordering prioritizes the
processing of requests with lower remaining SLOs due to
their more stringent completion deadlines.

Let us denote the number of CPU cores allocated and the
batch size of the model by 𝑐 and 𝑏, respectively. In addi-
tion, we use 𝑐𝑙𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑐𝑙𝑟 , 𝑟 ∈ 𝑅) to indicate the highest
communication latency in the current requests.

Themonitoring system continuously reports to the adapter
the average number of requests served by the model in a
given period. To ensure the stability of the system, that is, no
back pressure should form in the queue, and the throughput
of the model should be no less than the expected request
rate, that is, ℎ(𝑏, 𝑐) ≥ _. Such a constraint ensures that the
model is sufficiently provisioned. As a result, the queuing of
requests on the model will be under control.
The optimization problem is to decide 𝑐 and 𝑏 for the

model such that under the workload _, none of the request
SLOs are violated. The goal is to minimize the amount of
resources (CPU cores) used for the model. The problem can
be formulated with the following integer program (IP):

Minimize 𝑐 + 𝛿 × 𝑏
subject to 𝑙 (𝑏, 𝑐) + 𝑞𝑟 (𝑏, 𝑐) + cl𝑚𝑎𝑥 ≤ 𝑆𝐿𝑂, ∀𝑟 ∈ 𝑅

ℎ(𝑏, 𝑐) ≥ _

𝑏, 𝑐 ∈ Z+

(3)

In the objective function, in addition to CPU cores, we
incorporate an insignificant penalty term 𝛿 into the batch
size to mitigate unnecessary latencies. The first constraint
ensures that all requests for SLOs, including communication
latency, will be satisfied. We use the smallest SLO in the
current batch for all requests in the same batch because we
do not intend to violate any remaining SLO requests. The
second and third constraints are designed to maintain system
stability, necessitating that the CPU cores and the batch size
be constrained to positive integer values. The objective is
to minimize the total amount of resources, that is, the total
number of CPU cores given to the model. All the notation
used is available in Table 2.

3.4 Solution
With IP and a single model, we use a brute force approach
shown in Algorithm 1. We feed the requests with their re-
maining SLOs to a queue and then reorder them based on
the EDF policy (lines 1–2). After finding the maximum com-
munication latency in the set of requests (line 4), we then
iterate over all possible batch sizes and CPU core allocations
(lines 5–6). Furthermore, we check if the current configu-
ration and all the requests in the subsequent batches will
satisfy their remaining SLOs (lines 10–15). Note that there
will be a waiting time for the subsequent batches equal to
the processing latency of the previous batches, calculated in
line 14. Finally, if there is no objection against the current
batch size and CPU core allocation configurations (line 15),
we send the found configuration to be enforced to the system.
The algorithm generates the optimal CPU core allocation
with the smaller batch size with the current allocation, since
it iterates from 1 to the maximum CPU core and batch size
allocations.

4 PRELIMINARY EVALUATION
Sponge is implemented in 6K lines of Python. For evalua-
tion, we use a physical machine from Chameleon Cloud [24]
equipped with Intel(R) Xeon(R) Gold 6240R (48 threads). To
enable the in-place vertical scaling, we install the experimen-
tal branch of minikube [6] since the in-place vertical scaling
feature is not yet in the official releases [3].
Baseline.We compare Sponge with a state-of-the-art hor-
izontal autoscaler in inference serving systems, FA2, and
static 8-core and 16-core instances. All approaches (including
Sponge) use a YOLOv5s [33] with the performance modeling
in Figure 3 to detect humans in images. We also set 𝑏𝑚𝑎𝑥 and

Algorithm 1: Optimal CPU and batch size finder
input :SLO, Set of requests 𝑟 ∈ 𝑅 with communication

latency, Performance model
output :𝑐, 𝑏

1 𝑞 ← 𝑅

2 Reorder q (EDF policy)
3 𝑛 = 𝑙𝑒𝑛(𝑅)
4 Calculate 𝑐𝑙𝑚𝑎𝑥

5 for 𝑐 in [1, 𝑐𝑚𝑎𝑥] do
6 for 𝑏 in [1, 𝑏𝑚𝑎𝑥] do
7 Calculate 𝑙 (𝑏, 𝑐)
8 𝑏𝑒𝑡𝑡𝑒𝑟 = 𝑇𝑟𝑢𝑒

9 𝑞𝑟 = 0
10 for 𝑖 in [1, 𝑛, 𝑏] do
11 if 𝑙 (𝑏, 𝑐) + 𝑐𝑙𝑚𝑎𝑥 + 𝑞𝑟 ≥ 𝑆𝐿𝑂 then
12 𝑏𝑒𝑡𝑡𝑒𝑟 = 𝐹𝑎𝑙𝑠𝑒

13 break
14 𝑞𝑟 = 𝑞𝑟 + 𝑙 (𝑏, 𝑐)
15 if 𝑏𝑒𝑡𝑡𝑒𝑟 = 𝑇𝑟𝑢𝑒 then
16 return c, b

𝑐𝑚𝑎𝑥 to 16 for Sponge as there is no significant gain after-
ward. For the adaptation period, we set one second same as
the network bandwidth interval in the dataset.
Workload generator. In order to assess Sponge in scenarios
with dynamic network bandwidth, we design a workload
generator that produces requests asynchronously at a fixed
rate of 20 RPS with predefined SLOs similar to Figure 1.
We use gRPC [16] to handle communication between all
components of the system, including the workload generator.
Performance evaluation. Figure 4 demonstrates the over-
all performance of Sponge, FA2, and statically assigned CPU
cores under a dynamic network bandwidth. Under a given
workload and the remaining SLOs, FA2 violates a large num-
ber of requests’ SLO (roughly 5% and over 50% violation in
some severe cases (Time = 1 and 360 in the same Figure)
when the bandwidth becomes limited since bringing new
instances is tied with the cold startup issue, and FA2 needs
roughly 10 seconds to find a new configuration, adjust itself,
and stabilize the system. The statically assigned 8-core in-
stance experiences SLO violations after a few seconds due to
insufficient computational resources to handle the requests,
necessitating a more powerful instance. Conversely, the 16-
core instance shows almost no SLO violations, indicating
potential over-provisioning of the DL model. Sponge solves
the resource waste by dynamically changing the allocated
CPU cores in response to the network bandwidth changes
and reduces the amount of allocated CPU by over 20% while
sacrificing less that 0.3% of SLO violations, compared to stat-
ically assigned 16-core instance.

0

50

99

SL
O

 V
io

la
tio

n
(%

)

Sponge FA2 CPU8 CPU16

0 100 200 300 400 500 600
Time (s)

1

8

16

C
PU

 C
or

es

Figure 4: SLO violations and allocated CPU cores.

5 RELATEDWORK
Inference serving with SLO guarantee.Multiple works
have been proposed with SLO guarantees [12, 18, 31, 32].
Model switch [38] switches to a different model architec-
ture in response to workload changes to ensure SLO. Grand-
SLAm [23] uses dynamic batching and request reordering
to increase system throughput with the SLO guarantee. In-
FaaS [29] gets user preferences about accuracy, cost, or per-
formance and provides a model variant to satisfy the re-
quested SLO. Jellyfish [27] trades accuracy with latency by
model switching and data adaptation to match the input of
the model variant to guarantee latency SLO.
Autoscaling in inference serving. Autoscaling in infer-
ence serving has been extensively studied [10, 20, 30, 37].
Kubernetes VPA [5] and HPA [4] use threshold-based met-
rics such as CPU or memory usage to change computing
resources or the number of instances of DL-based inference
services. Clipper [11] provides an abstraction layer to sim-
plifymodel deployment across frameworks and uses adaptive
batching to increase system throughput. IPA [15] uses model
switching and horizontal scaling to increase system accu-
racy while minimizing computing resources. Cocktail [19]
uses a subset of model variants with a weighted scaling pol-
icy to ensure low cost, a predefined accuracy, and latency
SLOs archived. FA2 [28] uses graph transformation and dy-
namic programming to design a new horizontal autoscaler
to increase system utilization with SLO guarantees.

The mentioned approaches neither consider dynamic net-
works (wireless and 4G/5G) without changing the model
variant that affects other metrics such as cost and accuracy
nor use in-place vertical scaling, which Sponge has shown a
necessity for state-of-the-art autoscalers to guarantee pre-
defined latency SLO under a dynamic network bandwidth.

6 CONCLUSION & FUTUREWORK
In this work, we presented Sponge, the first inference serving
system that uses in-place vertical scaling, request reordering,
and dynamic batching with SLO guarantees. The preliminary
evaluation shows that Sponge reduces the SLO violation to
0.3% while minimizing the CPU allocation in a dynamic
network. We identify the following limitations of Sponge
and consider them as future directions:
Model variant. There are variations of the same DL model
with different configurations in terms of architecture that
are capable of doing similar tasks with different objectives
such as accuracy [27, 29, 38]. Incorporating model variants
requires careful system design, since the three pillars of
accuracy, latency, and CPU allocation (even without vertical
scaling) have conflicting relations [31].
Pipeline.Many modern applications are composed of mul-
tiple DL models, such as Amazon Alexa, and are usually
arranged as a DAG. Generalizing Sponge to support such
applications requires a new algorithm design, since there
is a data dependency [10, 15, 21, 28] between DL models
and finding an optimal resource allocation for individual DL
models requires consideration of all models in the system.
Multidimensional scaling. The resource requirements of
a DL model can be influenced by the dynamic nature of
workloads [17, 37], making them difficult to predict. Vertical
scaling can support the incoming workload to a certain de-
gree, meaning that horizontal scaling must be considered if
the workload is too much for a single instance of a DL model.
The joint optimization of horizontal scaling and vertical scal-
ing mechanisms brings new challenges, such as changing an
upstream DL model’s processing latency rate (vertical scal-
ing), which affects the input rates on downstream DL models
and may require additional instances (horizontal scaling).

ACKNOWLEDGEMENTS
Thiswork has been supported in part byNSF (Awards 2233873,
2007202, 2038080, and 2107463), Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-ID
210487104 - SFB 1053, Roblox Corporation, and Chameleon
Cloud.

REFERENCES
[1] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan.

2020. CarMap: Fast 3D Feature Map Updates for Automobiles. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 1063–1081.

[2] Gene M Amdahl. 1967. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference. 483–485.

[3] The Kubernetes Authors. 2023. In-place Resource Resize
for Kubernetes Pods. https://kubernetes.io/blog/2023/05/12/
in-place-pod-resize-alpha/. (2023). Accessed on 30.01.2024.

[4] The Kubernetes Authors. 2024. Kubernetes Horizontal Pod
Autoscaling. https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/. (2024). Accessed on 30.01.2024.

[5] The Kubernetes Authors. 2024. Kubernetes Vertical Pod Au-
toscaling. https://cloud.google.com/kubernetes-engine/docs/concepts/
verticalpodautoscaler/. (2024). Accessed on 30.01.2024.

[6] The Kubernetes Authors. 2024. Minikube. https://minikube.sigs.k8s.io/.
(2024). Accessed on 30.01.2024.

[7] The Prometheus Authors. 2024. Prometheus monitoring and alerting
toolkit. https://prometheus.io/. (2024). Accessed on 30.01.2024.

[8] Florian Brandherm, Julien Gedeon, Osama Abboud, and Max
Mühlhäuser. 2022. BigMEC: Scalable Service Migration for Mobile
Edge Computing. In 2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC). IEEE, 136–148.

[9] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. 2021. Lazy Batching:
An SLA-aware batching system for cloud machine learning inference.
In IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA). IEEE, 493–506.

[10] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Sto-
ica, Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: Latency-
Aware Provisioning and Scaling for Prediction Serving Pipelines.
In ACM Symposium on Cloud Computing (SoCC). 477–491. https:
//doi.org/10.1145/3419111.3421285

[11] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A {Low-Latency}
Online Prediction Serving System. InUSENIX Symposium on Networked
Systems Design and Implementation (NSDI). 613–627.

[12] Aditya Dhakal, Sameer G. Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference
Platform. In ACM Symposium on Cloud Computing (SoCC). 492–506.
https://doi.org/10.1145/3419111.3421284

[13] Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography. Commun. ACM 24, 6 (1981), 381–395.

[14] Saeid Ghafouri, Alireza Karami, Danial Bidekani Bakhtiarvan, Aliak-
bar Saleh Bigdeli, Sukhpal Singh Gill, and Joseph Doyle. 2022. Mobile-
Kube: Mobility-aware and energy-efficient service orchestration on
kubernetes edge servers. In 2022 IEEE/ACM 15th International Confer-
ence on Utility and Cloud Computing (UCC). IEEE, 82–91.

[15] Saeid Ghafouri, Kamran Razavi, Mehran Salmani, Alireza Sanaee, Tania
Lorido-Botran, Lin Wang, Joseph Doyle, and Pooyan Jamshidi. 2024.
IPA: Inference Pipeline Adaptation to Achieve High Accuracy and
Cost-Efficiency. (2024). arXiv:cs.DC/2308.12871

[16] grpc [n. d.]. gRPC. https://grpc.io. ([n. d.]). Accessed on 29.10.2021.
[17] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and

Björn B Brandenburg. 2017. Swayam: distributed autoscaling to meet
slas of machine learning inference services with resource efficiency.
In ACM/IFIP/USENIX Middleware Conference. 109–120.

[18] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the BottomUp. InUSENIX
Symposium on Operating Systems Design and Implementation (OSDI).
443–462.

[19] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R Das.
2022. Cocktail: A multidimensional optimization for model serving in
cloud. In USENIX NSDI. 1041–1057.

[20] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. 2021. Scrooge: A
cost-effective deep learning inference system. In Proceedings of the
ACM Symposium on Cloud Computing. 624–638.

[21] Yitao Hu, Weiwu Pang, Xiaochen Liu, Rajrup Ghosh, Bongjun Ko,
Wei-Han Lee, and Ramesh Govindan. 2021. Rim: Offloading Inference

https://kubernetes.io/blog/2023/05/12/in-place-pod-resize-alpha/
https://kubernetes.io/blog/2023/05/12/in-place-pod-resize-alpha/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler/
https://minikube.sigs.k8s.io/
https://prometheus.io/
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421284
http://arxiv.org/abs/cs.DC/2308.12871
https://grpc.io

to the Edge. In Proceedings of the International Conference on Internet-
of-Things Design and Implementation. 80–92.

[22] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Sub-
habrata Sen, and Oliver Spatscheck. 2012. A close examination of
performance and power characteristics of 4G LTE networks. In Proceed-
ings of the 10th international conference on Mobile systems, applications,
and services. 225–238.

[23] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guarantee-
ing SLAs for Jobs in Microservices Execution Frameworks. In ACM
European Conference on Computer Systems (EuroSys). 1–16. https:
//doi.org/10.1145/3302424.3303958

[24] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex
Rocha, and Joe Stubbs. 2020. Lessons learned from the Chameleon
testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[25] Veton Kepuska and Gamal Bohouta. 2018. Next-generation of virtual
personal assistants (microsoft cortana, apple siri, amazon alexa and
google home). In 2018 IEEE 8th annual computing and communication
workshop and conference (CCWC). IEEE, 99–103.

[26] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-
time object detection for mobile augmented reality. In The 25th annual
international conference on mobile computing and networking. 1–16.

[27] Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish:
Timely Inference Serving for Dynamic Edge Networks. In 2022 IEEE
Real-Time Systems Symposium (RTSS). 277–290. https://doi.org/10.1109/
RTSS55097.2022.00032

[28] Kamran Razavi, Manisha Luthra, Boris Koldehofe, Max Mühlhäuser,
and Lin Wang. 2022. FA2: Fast, accurate autoscaling for serving deep
learning inference with SLA guarantees. In 2022 IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
146–159.

[29] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serving. In
USENIX Annual Technical Conference (ATC). 397–411.

[30] Francisco Romero, Mark Zhao, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. Llama: A Heterogeneous & Serverless Framework for

Auto-Tuning Video Analytics Pipelines. In ACM Symposium on Cloud
Computing (SoCC). 1–17.

[31] Mehran Salmani, Saeid Ghafouri, Alireza Sanaee, Kamran Razavi, Max
Mühlhäuser, Joseph Doyle, Pooyan Jamshidi, and Mohsen Sharifi. 2023.
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Infer-
ence Serving Systems. In Proceedings of the 3rd Workshop on Machine
Learning and Systems. 78–86.

[32] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In ACM Symposium on Operating Systems Principles (SOSP).
322–337. https://doi.org/10.1145/3341301.3359658

[33] ultralytics. 2024. YOLOv5. https://github.com/ultralytics/yolov5.
(2024). Accessed on 30.01.2024.

[34] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming
of HEVC Video Over 4G/LTE Networks. IEEE Communications Letters
20, 11 (2016), 2177–2180.

[35] Chad Verbowski, Ed Thayer, Paolo Costa, Hugh Leather, and Björn
Franke. 2018. Right-Sizing Server Capacity Headroom for Global On-
line Services. In IEEE International Conference on Distributed Computing
Systems (ICDCS). 645–659.

[36] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, GuixianWang, Xi Liu, Congkai
An, Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding op-
erational 5G: A first measurement study on its coverage, performance
and energy consumption. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication.
479–494.

[37] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. Mark:
Exploiting cloud services for cost-effective, SLO-aware machine learn-
ing inference serving. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19). 1049–1062.

[38] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth
Garg. 2020. Model-switching: Dealing with fluctuating workloads in
machine-learning-as-a-service systems. In 12th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 20).

https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1109/RTSS55097.2022.00032
https://doi.org/10.1109/RTSS55097.2022.00032
https://doi.org/10.1145/3341301.3359658
https://github.com/ultralytics/yolov5

	Abstract
	1 Introduction
	2 Motivation
	2.1 Dynamic SLO
	2.2 Autoscaling Challenges

	3 System Design
	3.1 Overview
	3.2 Performance Model
	3.3 Problem Formulation
	3.4 Solution

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion & Future Work
	References

