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Machine learning has become the de-facto approach for various scientific domains such as computer vision
and natural language processing. Despite recent breakthroughs, machine learning has only made its way into
the fundamental challenges in computer systems and networking recently. This paper attempts to shed light
on recent literature that appeals for machine learning based solutions to traditional problems in computer
systems and networking. To this end, we first introduce a taxonomy based on a set of major research problem
domains. Then, we present a comprehensive review per domain, where we compare the traditional approaches
against the machine learning based ones. Finally, we discuss the general limitations of machine learning for
computer systems and networking, including lack of training data, training overhead, real-time performance,
and explainability, and reveal future research directions targeting these limitations.

CCS Concepts: • General and reference→ Surveys and overviews; • Computer systems organization;
• Networks→ Network management;

Additional Key Words and Phrases: machine learning, computer systems, computer networking

ACM Reference Format:
Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang. 2022. Machine Learning for Computer Systems and
Networking: A Survey. ACM Comput. Surv. 1, 1, Article 1 (January 2022), 35 pages. https://doi.org/10.1145/
3523057

1 INTRODUCTION
Revolutionary research in machine learning (ML) has significantly disrupted the scientific commu-
nity by contributing solutions to long-lived challenges. Thanks to the continuous advancements in
computing resources (e.g., cloud data centers) and performance capabilities of processing units (e.g.,
accelerators like GPUs and TPUs), ML, particularly its rather computation-expensive subset namely
deep learning (DL), has gained its traction [120, 131]. In general, ML has established dominance
in vision tasks such as image classification, object recognition [86], and more to follow [58, 156].
Other remarkable examples where ML is thriving include speech recognition [52] and machine
translation [155]. ML is also prevailing to a plethora of specialized tasks that prior work have been
far out of reach to yield notable outcomes [2, 141]. For instance, it was not until recently that top
professional Go players were beaten by a deep reinforcement learning (DRL) agent [141].
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Considering this unprecedented growth of ML in various classification/control tasks, one begs
the question, how can we apply ML to other domains that have long suffered from sub-optimal
performance that traditional solutions can offer at their best? One prominent example is the domain
of computer systems and networking, where parameter tuning and performance optimization
largely rely on domain expertise and highly-engineered heuristics. Essentially, it is of great interest
to answer whether it is time to make machines learn to optimize their performance by themselves
automatically. Putting it into perspective, there is a multitude of challenges for which ML can prove
beneficial due to its innate ability to capture complex properties and extract valuable information
that no human, even the domain expert, can master.

We observe two general challenges in the current research practice of applying ML in computer
systems and networking. First, there is no consensus on a common guideline for using ML in
computer systems and networking (e.g., when ML would be preferable over traditional approaches),
with research efforts, so far, scattered in different research areas. The lack of a holistic view makes
researchers difficult to gain insights or borrow ideas from related areas. Second, there have not
been any recent efforts that showcase how to select an appropriate ML technique for each distinct
problem in computer systems and networking. In particular, we observe that in some cases, only
a certain ML algorithm is suitable for a given problem, while there exist also problems that can
be tackled through a variety of ML techniques and it is nontrivial to choose the best one. The
above challenges constitute major obstacles for researchers to capture and evaluate recent work
sufficiently, when probing for a new research direction or optimizing an existing approach.
In this paper, we tackle these challenges by providing a comprehensive horizontal overview to

the community. We focus on the research areas of computer systems and networking, which share
similar flavor and have seen promising results through using ML recently. Instead of diving into
one specific, vertical domain, we seek to provide a cross-cutting view for the broad landscape of
the computer systems and networking field. Specifically, we make the following contributions:
• We present a taxonomy for ML for computer systems and networking, where representative
works are classified according to the taxonomy.

• For each research domain covered in the taxonomy, we summarize traditional approaches and
their limitations, and discuss ML-based approaches together with their pros and cons.

• We discuss the common limitations of ML when applied in computer systems and networking in
general and reveal future directions to explore.

With these contributions, we expect to make the following impact: (1) introducing new researchers
having no domain expertise to the broad field of ML for systems and networking, (2) bringing
awareness to researchers in certain domains about the developments of applying ML on problems
in neighboring domains and enabling to share and borrow ideas from each other.

Related surveys. There has not been a survey that satisfies the objectives we aim to achieve in
this paper. Most of the related surveys are domain-specific, focusing on a narrow vertical overview.
For example, Zhang et al. present a survey on leveraging deep learning in mobile and wireless
networking [195]; hence, we will skip these areas in this survey. There are also surveys focusing
on areas like compiler autotuning [6], edge computing [37], and Internet-of-Things [63]. While
targeting different levels of concerns, these surveys can facilitate domain experts to gain a deep
understanding of all the technical details when applying ML on problems from the specific domain.
However, they miss the opportunity to show the broad research landscape of using ML in the
general computer systems and networking field. We aim to bridge such a gap in this work. The
closest work to ours is [174]. Focusing on networking, this survey provides an overview of ML
applied in networking problems, but ignores the computer systems part. Besides, the paper was
published almost four yeas ago. Considering that significant progress has been made in recent
years, we believe it is time to revisit this topic.
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2 TAXONOMY
We first categorize the existing work onML for computer systems and networking. Figure 1 presents
a taxonomy from two angles: the problem space and the solution space. The problem space covers
fundamental problems that have been extensively studied in the traditional computer systems and
networking research area. The solution space is constructed based on our experience, where the
most important feature dimensions of ML-based solutions are included. We highlight over 150
papers proposed for the problems falling in the taxonomy where machine learning is mentioned.
The paper selection is based on a comprehensive approach to cover as broadly as possible the
papers in each of the selected research domains. For each of the covered domains, we selectively
pick the more notable works and we provide more elaboration on their contributions.

ML for computer systems and networking

Problem space Solution space

Computer systems Computer networking

Memory/cache management

DB query optimization

Cluster resource scheduling

Packet classification

Network routing

Congestion control

Video streaming

Paradigm

Supervised

Unsupervised

RL

Environment

Centralized

Distributed

Temporality

Offline

Online

Fig. 1. A taxonomy of ML for computer systems and networking.

2.1 Problem Space
In the problem space, we focus our attention on representative research problems from both the
computer systems and networking communities. These problems are selected based on the following
principles: (1) The problem should be fundamental in the considered domain, not a niche area
that requires heavy background knowledge to understand. (2) There should still be active research
efforts made on addressing the problem. (3) There should be considerable research on applying
ML to tackle the problem. For computer systems, we will look at three problems: memory/cache
management, cluster resource scheduling, and query optimization in databases. For computer
networking, we will focus on four problems: packet classification, network routing, congestion
control, and video streaming. This categorization helps the readers (1) dive into the specific topics
of interest directly, and (2) obtain an overview of the other problems in the neighboring fields that
have benefited from ML as well. Here, we provide a brief introduction to these problems:

Computer systems. A computer system is broadly defined as a set of integrated computing
devices that take, generate, process, and store data and information. Generally speaking, a computer
system is built with at least one computing device. In the literature, both single-device computer
systems as well as distributed systems consisting of a set of computing devices have been extensively
explored. The research goals in computer systems include performance, energy efficiency, reliability,
and security. In this survey, we focus on three fundamental problems in computer systems, each
representing one level of the system abstractions:
• Memory/cache management is a representative decision making problem domain at the level of
single-device operating systems. The main problems include memory prefetching from DRAM
to CPU cache and page scheduling from disk to DRAM.
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• Cluster resource scheduling is a core task at the level of distributed computing infrastructure,
which concerns the allocation of cluster resources to computing jobs in a distributed setting,
meeting set goals including resource efficiency, job completion time, among others.

• Query optimization is a central problem in databases—a representative application in systems.
Given a query, the problem is to find the most efficient query execution plan.
Computer networking. A computer network is an interconnection of multiple computing

devices (a.k.a. hosts) where data can be sent/received among these connected devices. Apart from
the hosts, computer networks involve devices that are responsible for forwarding data between
hosts, which are called network devices including routers and switches. Computer networking is a
long-lasting research domain where we have seen a significant number of artifacts and control
mechanisms. In particular, we will look at the following four fundamental problems in networking
ranging from packet-level, to connection-level, and to application-level:
• Packet classification is a basic networking functionality in almost all network devices. The
problem of network packet classification is to decide the category of packets according to some
predefined criteria with high efficiency (high speed, low resource footprint).

• Network routing concerns finding the best path for delivering packets on a network, given some
performance metrics such as latency.

• Congestion control is a network mechanism in the transport layer to provide connection-oriented
services based on best-effort network delivery.

• Video streaming is a one of the most popular network applications, which is mostly based on the
concept of adaptive bitrate (ABR) nowadays. ABR aims to choose the most suitable bitrate for
delivering video segments under dynamic network conditions.

2.2 Solution Space
Existing work of applying ML for computer systems and networking problems can also be viewed
from the angle of the solution space, namely which learning paradigm/algorithm is applied.

Learning paradigm. There are generally three types of learning paradigms, namely supervised
learning, unsupervised learning, and reinforcement learning, and all of them have been applied to
some of the problems we cover in this survey. We refer readers not familiar with these paradigms
to a general introduction in [87].

Environment. There are generally two types of environments our considered problems can be
in: centralized and distributed. Centralized environment involves a single entity where decision-
making is based on global information, while distributed environments involve multiple possibly
coordinated autonomous entities. While it is natural to have a distributed solution in a distributed
environment, distributed learning is generally more difficult than centralized ones, mainly due to
the limitations in coordination. Federated learning (FL) is a distributed learning technique, where
the client workers perform the training, and communicate with a central server to share the trained
model instead of the raw data [7]. Multi-agent techniques [121] are other examples of distributed
learning. In this survey, We categorize the solutions based on whether they are centralized or
distributed, but we do not go further into details of the learning technique (e.g., FL). For more
information about FL systems, we refer the reader to recently published surveys such as [190].

Temporality. Learning can also be divided into two fashions with respect to their temporality:
offline and online. Offline learning requires to pre-train an ML model with existing data in advance
and the trained model is applied in decision making without being trained on further input
experienced. Online learning involves the continuous learning of ML models, where at inference
time, the model is also updated after experiencing the given input. Depending on the scenario, a
model may first be trained offline and then re-trained online.
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Table 1. Summary of selected ML solutions for computer systems and networking problems.

Solution Paradigms Environment Temporality
SL USL RL Centralized Distributed Offline Online

Memory/cache management
LSTM Hardware Prefetcher [194] ✓ ✓ ✓ ✓
Learning Access Patterns [57] ✓ ✓ ✓ ✓ ✓
Compact Prefetcher [149] ✓ ✓ ✓
Kleio [36] ✓ ✓ ✓ ✓
Lightweight Caching [12] ✓ ✓ ✓
RL-Cache [80] ✓ ✓ ✓

Cluster resource scheduling
DeepRM [106] ✓ ✓ ✓
Device Placement [118] ✓ ✓ ✓
Decima [108] ✓ ✓ ✓

Query optimization in databases
Learned Index Structures [84] ✓ ✓ ✓
SkinnerDb [162] ✓ ✓ ✓
DQ [85] ✓ ✓ ✓
State Representations [125] ✓ ✓ ✓
MSCN [79] ✓ ✓ ✓
Neo [110] ✓ ✓ ✓

Packet classification
Deep Packet [100] ✓ ✓ ✓
NeuroCuts [97] ✓ ✓ ✓

Network routing
Learning to Route [165] ✓ ✓ ✓
DQRC [191] ✓ ✓ ✓

Congestion control
Remy [179] ✓ ✓ ✓
Vivace [35] ✓ ✓ ✓
Aurora [71] ✓ ✓ ✓
Orca [1] ✓ ✓ ✓
DRL-CC [184] ✓ ✓ ✓

Video streaming
CS2P [154] ✓ ✓ ✓
Pensieve [107] ✓ ✓ ✓

SL: supervised learning, USL: unsupervised learning, RL: reinforcement learning

2.3 Classification of Selected Works
Before we dive into each of the problem domains in the following sections, we provide a cross-
cutting view for all the fields, covering the major works and showing how they can be classified
with respect to the solution space described above. Such a view is provided in Table 1.

3 MEMORY/CACHE MANAGEMENT
Typical state-of-the-art computer systems utilize multi-layered memory devices and involve several
complex memory management operations. Despite the technological advancements, i.e., the expo-
nential reduction of storage cost over the decades and the inverse expansion of the size, storage
systems remain the untamed stallion of performance bottlenecks in every computer system.
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Fig. 2. Representative memory/cache management problems: memory prefetching and page scheduling in
operating systems, and cache admission in content delivery networks (CDNs).

Figure 2 depicts the major storage-related problems in existing computer systems. In the grand
scheme of memory operations, retrieving an entry from the CPU cache is a matter of nanoseconds,
but conditionally advances by several orders of magnitude when a cache miss occurs and the
entry must be fetched from DRAM or a disk. Over the years, a significant amount of work has
been dedicated to tackling the inefficiencies and induced latency of traversing the various memory
hierarchy. In several cases, sophisticated mechanisms have been proposed that concern preemptive
actions. In other words, there is ongoing research on how to prefetch data or instructions from
DRAM to the CPU cache and schedule hot pages from the disk to DRAM. At the networked system
level, complex cache admission and invalidation policies for content delivery network (CDNs) have
also been explored with the aim of performance optimization in delivering large contents such as
video data. The common challenge in all these storage-related problems consist in the prediction of
the data pattern in these systems, which has become increasingly challenging due to the growing
complexity in how applications access their data.

3.1 Traditional Approaches and Limitations
A significant amount of research has been focused on mitigating memory-induced bottlenecks. One
example is memory prefetching, which preloads memory content into the register or cache to avoid
slow memory accesses. There are generally two ways to implement a memory prefetcher: software-
based and hardware-based. Software-based prefetchers use explicit instructions for prefetching.
While offering flexibility, software-based prefetchers suffer from increased code footprint and
latency, and low accuracy. Therefore, mainstreammemory prefetchers are implemented in hardware
integrated in the CPU. State-of-the-art hardware prefetchers typically rely on CPU’s memory access
pattern and compute a corresponding delta based on the access pattern for prefetching [67, 116,
123, 140, 144, 192]. However, prefetchers of this type become sub-optimal when memory accesses
are highly irregular. On the other hand, prefetchers based on pattern history perform much better
at capturing irregularities, but are more expensive to integrate [194].
Page scheduling aims to improve performance by providing pages that are frequently accessed

close to the computing units such as DRAM. Page scheduling exhibits high complexity and vast
research efforts have attempted to address it thoroughly [22, 38, 73, 114, 139, 181, 182]. Common
approaches on page scheduling usually involve system-level integration, for example, in the op-
erating system or during compilation. Current state-of-the-art leverages history information to
predict future memory accesses. Yet, the performance bottleneck still exists [36].

Towards caching on a larger scale, CDNs focus on optimizing the latency for content requested
from users [80]. To do so, CDNs utilize cache admission and eviction policies that fetch and remove
objects from the cache, respectively. Whenever a requested object is not in the cache and has to be
fetched, the user suffers from degraded performance [80]. Extended research has been conducted
on admission/eviction schemes for cache-miss optimization [23, 39, 80, 102].
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Limitations of traditional approaches: Rule-based solutions are often sub-optimal since
the data pattern is too complex to specify with simple rules. On the other hand, sophisticated
solutions that explore the deep spatial and temporal correlations in the data are hard to
make their way into real-world systems since they are expensive to implement and have
poor generality when facing different applications. Such contradiction has led to almost
stagnant developments in memory prefetching and caching solutions.

3.2 ML-based Approaches
As mentioned above, data pattern prediction is of paramount importance for prefecting and caching
algorithms. ML, by its nature, is a powerful tool to explore hidden patterns in irregular data. Thus,
the use of ML to these storage-related problems is well justified.

3.2.1 Memory Prefetchers. A notable work in memory prefetchers with neural networks is intro-
duced in [194]. The authors target pattern history based prefetchers, and more specifically variable
length delta prefetcher (VLDP) [140]. The authors leverage long short-term memory (LSTM), an
recurrent neural networks (RNN) based learning algorithm, to predict the memory addresses of
upcoming accesses to memory. The authors integrate the LSTM neural network in the last cache
level to make predictions in a bounded environment—the OS page [194]. Implementation and eval-
uation are conducted in an offline manner, where the prefetcher is tested on accuracy and coverage.
Another work formulates prefetching as a classification problem and proposes two variants based
on embedding LSTM and a hybrid approach respectively [57]. With embedding LSTM a small
constant number of predictions per time step are performed in both a local and global context. In
the hybrid approach, 𝑘-means clustering is used to partition the memory space into regions and
then a neural network is used for inference in each region. Srivastava et al. target the limitations of
prior ML-based approaches and present a more robust solution for integrating a learning-based
predictor to current system architectures. Similar to previous works, the authors use the LSTM to
predict future memory accesses. Besides building a model with high accuracy, the authors employ
model compression to increase the inference speed and achieve substantial performance gains in
execution. Further, they propose to learn a policy online to retrain the model when the accuracy
drops below a predefined threshold [149]. This enables the proposed solution to adjust to real-world
environments where a specialized approach might not fit the mould. Overall, results are promising
against traditional prefetchers and unfold a new step towards learnt memory management systems.

3.2.2 Page Scheduling. Kleio leverages LSTM neural networks to predict page access counts in
applications that heavily impact system’s performance [36]. Kleio identifies crucial pages that
will increase application’s performance and trains an LSTM network for each. This approach
significantly boosts accuracy as each network is able to capture naturally the problem space of
page scheduling, and the neural networks come greatly reduced in terms of output range values,
which contribute to overall better predictions. Additionally, pages that are not crucial for system’s
performance fallback to the existing history-based page scheduler [36]. Evaluation indicates that
Kleio’s neural network predictions sharply enhance application’s performance, while accuracy
indicators expose severe limitations of history-based schedulers.

3.2.3 Cache Admission and Eviction in CDNs. Recently, two remarkable contributions [12, 80]
leverage ML techniques for cache admission policies in CDNs. Berger proposes a supervised
learning scheme based on optimal caching decisions (OPT) [12]. The proposed scheme, LFO, learns
a caching policy that maps features to those of OPT, essentially predicting whether an object should

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:8 Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang

be admitted to the cache [12]. LFO achieves high accuracy with negligible delay, constituting a
feasible alternative for production. While Berger advocates against RL for cache admission due
to increased complexity and slow reward convergence [12], RL-Cache leverages RL to optimize
directly for hit rate [80]. Based on a complete set of features, RL-Cache trains a neural network
that decides upon an object request, whether it is to be admitted to the cache or not [80]. RL-Cache
trains on trace requests from production CDNs and employs LRU as its eviction policy. Additionally,
RL-Cache is optimized for deployment, considering that periodic training can be incurred in a
different location relieving the content server. RL-Cache competes seriously with state-of-the-art
schemes and composes an interesting direction for further research. Fedchenko et al. take a different
approach on content caching with ML in [45]. Instead of utilizing LSTM neural networks for the
prediction of sequences or time series as explained above, a simple feed-forward neural network is
used to predict the most popular entries. However, performance advancements are insignificant
when compared with existing policies [149], while the authors report that treating the problem as
classification, similarly to [57], is a direction worth exploring [45].

3.3 Discussion on ML-based Approaches
A common theme among most existing work is the use of RNNs and in particular LSTM neural
networks. This strikes as the de-facto consideration when it comes to memory-related challenges.
The ability of RNNs to preserve state is what makes them powerful in problems involving predictions
on sequences of data or data in a time series. This is in clear contrast to traditional approaches,
which suffer poor predictions on the complex data pattern. Meanwhile, ML-based approaches have
become more accessible due to various AutoML solutions and tools. Another similar trait lies at
the selection of learning algorithms the authors have to make. We observe that most approaches
rely on supervised learning and making predictions. Considering the nature of the problems they
are targeting, this also comes naturally. Yet, we observe that despite the fitting-the-mould type of
approach that researchers follow at the infant stage, when results are not significant, many authors
attempt to solve the problem with an unorthodox methodology. For instance, RL-Cache leverages
reinforcement learning to construct a cache admission policy rather than following a statistical
estimation approach [80]. However, this does not always translate to successful solutions, albeit it
certainly denotes a pattern on how researchers apply learnt solutions to traditional and emerging
challenges. Overall, ML-based approaches have demonstrated their clear benefits for problems
in memory systems when facing complex data patterns and provide multiple easy-to-generalize
techniques to tackle these problems from different angles. However, if the underlying data pattern
is simple and easy to obtain, using ML-based approaches would become an overkill.

4 CLUSTER RESOURCE SCHEDULING
Resource scheduling concerns the problem of mapping resource demands to computing resources
meeting set goals on resource utilization, response time, fairness, and affinity/anti-affinity con-
straints. Cloud-based solutions nowadays dominate the computing landscape, providing high
scalability, availability, and cost efficiency. Scheduling in the cloud environment goes beyond a
single or multi-core computing node and needs to deal with a multitude of physical nodes, some-
times also equipped with heterogeneous domain-specific accelerators. The scope of cloud resource
scheduling can be within a single cloud data center or across geo-distributed cloud data centers.
Cloud resource schedulers are typically built with a monolithic, two-level, or shared-state

architecture. Monolithic schedulers, e.g., YARN, use a single, centralized scheduling algorithm
for all jobs in the system. This makes them hard to scale and inflexible to support sophisticated
scheduling policies. Two-level schedulers like Mesos [59] and Hadoop-on-Demand introduce a
single active resource allocator to offer resources to scheduling frameworks and rely on these
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individual frameworks to perform fine-grained task scheduling. While being more scalable, the
conservative resource visibility and locking make them hard to implement scheduling policies such
as preemption and gang scheduling that require a global view of the overall resources. Shared-state
schedulers such as Omega [138] aim to address the problems of monolithic and two-level schedulers
by allowing for lock-free control. Schedulers following such designs operate completely in parallel
and employ optimistic concurrency control to mediate clashes between schedulers using concepts
like transactions [138], achieving both flexibility in policy customization and scalability. Adopting
one of these architectures, many works have been done on the scheduling algorithm design. The
heterogeneity of resources, together with the diversity of applications that impose different resource
requirements, has rendered the resource scheduling problem a grand challenge for cloud computing,
especially when scalability is of paramount importance.

4.1 Traditional Approaches and Limitations
Existing scheduling algorithms generally fall into one of the three categories: centralized, distributed,
and hybrid. Centralized schedulers have been extensively studied, where the scheduler maintains
a global view of the whole data center and applies a centralized algorithm for scheduling [13,
49, 51, 65, 161, 163, 169]. For example, Quincy [65] and Firmament [51] transform the scheduling
problem into a min-cost max-flow (MCMF) problem and use existing MCMF solvers to make
scheduling decisions. Considering multiple resources including CPU, memory, disk, and network,
schedulers like Tetris adapt heuristics for multi-dimensional bin packing problem to scheduling.
Tetrisched takes explicit constraints with jobs as input and employs a constraint solver to optimize
job placement [163]. Due to the global resource visibility, centralized schedulers normally produce
efficient scheduling decisions, but require special treatments to achieve high scalability.
Distributed schedulers make stateless scheduling decisions without any central coordination,

aiming to achieve high scalability and low latency [126, 132]. For example, Sparrow [126] employs
multiple schedulers to assign tasks to servers using a variant of the power-of-two-choices load
balancing technique. Each of the servers maintains a local task queue and adopts the FIFO queuing
principle to process the tasks that have been assigned to it by the schedulers. Fully distributed
schedulers are known for their high scalability, but may make poor decisions in many cases due to
limited visibility into the overall resource usage.

Hybrid schedulers perform scheduling in a distributed manner with partial information about the
global status of the data center [14, 27–29, 74]. Hawk schedules long-running jobs with a centralized
scheduler while using a fully distributed scheduler for short jobs [29]. Mercury introduces a
programmatic interface to enable a full spectrum of scheduling from centralized to distributed,
allowing applications to conduct tradeoffs between scheduling quality and overhead [74].
Recently, a number of resource schedulers have also been proposed targeting deep learning

workloads [103, 122, 183]. These schedulers are domain-specific, leveraging application-specific
knowledge such as early feedback, heterogeneity, and intra-job predictability to improve cluster
efficiency and reduce latency.

Limitations of traditional approaches: Cluster systems are complex and often impossi-
ble to model accurately, especially in heterogeneous settings where the available resources
are not uniformly distributed, or when the workload information is not known a priori.
Moreover, some performance metrics like tail latency are hard to model and optimize. These
properties make traditional heuristic-based solutions sub-optimal, indicating the potential
benefit of learning-based solutions.
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4.2 ML-based Approaches
Limited attention has been paid on applying ML techniques in general cluster resource scheduling.
Paragon [30] and Quasar [31] propose heterogeneity and interference-aware scheduling, employing
techniques in recommender systems, such as collaborative filtering, to match workloads to machine
types while reducing performance interference. DeepRM is one of the earliest works that leverage
deep reinforcement learning to pack taskswithmulti-dimensional resource demands to servers [106].
It translates the task scheduling problem into a reinforcement learning (RL) problem and employs
a standard policy-gradient RL algorithm to solve it. Although it only supports static workloads
and single-task jobs, DeepRM demonstrates the possibility and big potential of applying ML in
cluster resource scheduling. Another attempt is on device placement optimization for TensorFlow
computation graphs [118]. In particular, a recurrent neural network (RNN) policy network is used
to scan through all nodes for state embedding and is trained to predict the placement of operations
in a computational graph, optimizing job completion time using policy gradient methods. While
being effective, training the RNN is expensive when the state is large, leading to scalability issues
and requiring human experts involvement for manually grouping operations in the computational
graph. In a follow-up work, a two-level hierarchical network is used where the first level is used
for grouping and the second for operation placement [117]. The network is trained end-to-end,
thus requiring no human experts involvement.
More recent works choose to use directed acyclic graph (DAGs) to describe jobs and employ

ML methods for scheduling DAGs. Among them, Decima proposes new representations for jobs’
dependency graphs, scalable RL models, and new RL training methods [108]. Decima encodes job
stages and their dependencies as DAGs and adopts a scalable network architecture as a combination
of a graph neural network and a policy network, learning workload-specific solutions. Decima also
supports continuous streaming job arrivals through the novel training methods. Similarly, Lachesis
proposes a learning algorithm for distributed DAG scheduling over a heterogeneous set of clusters,
executors, differing from each other on the computation and communication capabilities [101].
The scheduling process is divided into two phases: (1) the task selection phase where a learning
algorithm, using modified graph convolutional networks, is used to select the next task and (2) the
executor selection phase where a heuristic search algorithm is applied to assign the selected task to
an appropriate cluster and to decide whether the task should be duplicated over multiple clusters.
Such a hybrid solution has shown to provide significant performance gain compared with Decima.

ML approaches have also been attempted in GPU cluster scheduling. DL2 applies a deep learning
technique for scheduling DL training jobs [128]. It employs an offline supervised learning mecha-
nism is used at the beginning, with an online training mechanism at run time. The solution does
not depend on explicit modeling of workloads and provides a solution for transiting from the offline
to the online mechanism, whenever the latter outperforms the former.

4.3 Discussion on ML-based Approaches
While a significant amount of research has been conducted for cluster scheduling, only little focuses
on applying learning techniques to fine-grained task scheduling. This could be in part explained
by the complexity of modeling cluster scheduling problems in a learning framework, but also by
the fact that the workloads related to the training of the scheduler need to be scheduled, possibly
over the same set of resources, and that such training could be very costly. These all increase
the complexity and should be included in the performance analysis and pros/cons studies of any
ML-based cluster scheduling approach, which is so far widely ignored. Still, cluster scheduling
can benefit from ML-based approaches, e.g., in heterogeneous settings or when the workload
information is not known a priori.
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5 QUERY OPTIMIZATION IN DATABASE SYSTEMS
Involving either a well-structured relational systems with SQL support or non-tabular systems (e.g.,
NoSQL) and in-memory stores, database systems are always the epicenter of any meaningful trans-
action. Yet, the state-of-the-art database management systems (DBMS), being carefully designed,
remain as the performance bottleneck for plenty of applications in a broad spectrum of scenarios.

A key factor to the performance of DBMS is query optimization—determining the most efficient
way to execute a given query considering all possible query plans. Over the years, several query
optimizers on different levels (e.g., execution plan optimization, optimal selection of index struc-
tures) have been proposed. Most solutions rely on hand-tuned heuristics or statistical estimations.
Surprisingly, case studies on query optimization reveal that the performance gains can be limited
or such optimization even has a detrimental effect to the system performance, especially in the
presence of estimation errors [90, 91].

5.1 Traditional Approaches and Limitations
Over the years, significant research efforts have been made on the optimization of DBMS and
particularly on the query optimizer—a crucial component causally related to the query execution
performance. Traditional query optimizers take as input an SQL query and generate an efficient
query execution plan, or as advertised, an optimal plan. Optimizers are typically composed of
sub-components, e.g., cardinality estimators and cost models, and typically involve a great deal of
statistical estimations and heuristics. The main body of literature on query optimizers typically
focuses on the direct optimization of a distinct component that performs better and collectively
yields better results. Elaborate papers on query optimization have been published over time [18].
Nevertheless, query processing and optimization remain a continually active research domain.

An early work on query optimizers is LEO [151]. LEO gradually updates, in a process described
as learning, cardinality estimates and statistics, in turn for future use to produce optimized query
execution plans. LEO utilizes a feedback loop to process history query information and adjust
cost models appropriately for enhanced performance [151]. CORDS is another significant work
on query optimizers, which reduces query execution time by exploring statistical dependencies
between columns prior to query execution [64]. Another work Eddies supports adaptive query
processing by reordering operators in a query execution plan dynamically [8]. Other contributions
focus on optimal selection of index structures [19, 53, 166]. More recent studies attempt to answer
whether query optimizers have reached their peak, in terms of optimal performance, or suffer from
limitations and potential performance degradation and how to mitigate them [91, 129].

Limitations of traditional approaches: The simplification assumptions based on which
these query optimizers operate, do not necessarily reflect the actual data patterns under-
neath. As such, inaccurate estimations can lead to detrimental performance and sub-optimal
execution plans. Yet, the underlying data pattern is typically too complex to capture or model
by general heurisitcs or even statistical methods, rendering these traditional approaches
inefficient when facing difficult data patterns.

5.2 ML-based Approaches
It is generally true that ML models are more capable of capturing a complex intuition regarding the
data schemes. Thus, leveraging ML for query optimization seems a natural fit, as the exploratory
nature of ML can assist in building complex estimation and cost models. Furthermore, the innate

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:12 Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang

ability of ML to adapt to different environments via continuous learning can be a beneficial factor
to execution plan optimizations.

5.2.1 Index Structure Optimization. Kraska et al. introduce a revolutionary approach where they
investigate the overhauling of existing indexes with learnt ones, based on deep learning [84].
The authors leverage a hybrid mixture of ML models to replace optimized B-trees, point indices
(i.e., hash-maps), and Bloom filters. The hybrid mixture, namely Recursive Model Index (RMI), is
composed of neural networks in a layered architecture, and is capable of predicting index positions
for B-trees and hash-maps. The simplest structure of zero hidden layers resembles linear regression,
an inexpensive and fast model. Inference of the output models is done in a recursive fashion, where
the top-layer neural network points to the next, and the same process is repeated until one of the
base models, predicts the actual index position.
For Bloom filters, RMI does not fit. Thus, a more complex neural network with a sigmoid

activation function is proposed, which approximates the probability that a key exists in the database.
Comparisons with state-of-the-art approaches highlight ML as a strong rival. There are cases where
reported execution speed is significantly higher, and memory footprint is sharply reduced. The
novelty of the approach is a key step towards automation of data structures and optimization
of DBMS, as it sets the pace for further exploration and exploitation of ML in a domain where
performance is critical. ALEX extends the approach of Kraska’s et al. to provide support for write
operations and dynamic workflows [33].

5.2.2 Cardinality Estimation. A slightly different attempt for alleviating wrongly predicted cost
models and query cardinalities is presented in [125]. The authors seek to overcome the simplifying
assumptions about the underlying data structure and patterns with the respective cost estimations,
which are employed through hand-tuned heuristics. To do so, a deep neural network (DNN) is
utilized that learns to output the cardinality of an input query, step by step, through division into
smaller sub-queries. Moving forward, the authors utilize the estimated cardinalities to produce an
optimal policy via Q-learning to generate query plans. The learning agent selects query operations
based on the sub-queries, which incrementally result in a complete query plan.
Kipf et al. focus on the prediction of join-crossing data correlations towards mitigating the

drawbacks of current sampling-based cardinality estimation in query optimization [79]. The authors
treat the problem with supervised learning by utilizing a DNN, defined as a multi-set convolutional
network (MSCN), which in turn is integrated by a fully-connected multi-layer neural network. The
MSCN learns to predict query cardinalities on unseen queries. Using unique samples, the model
learns to generalize well to a variety of cases. More specifically, in a tough scenario with zero-tuples,
where traditional sampling-based optimizers suffer, MSCN is able to provide a better estimation.
Yang et al. take an unsupervised approach to cardinality and selectivity estimation with Naru [187].
Naru utilizes deep auto-regressive models to provide high-accuracy selectivity estimators produced
in an agnostic fashion, i.e., without relying on assumptions, heuristics, specific data structures or
previously executed queries.

5.2.3 Join Ordering. A more recent work called SkinnerDB targets adaptive query processing
through optimization of join ordering [162]. SkinnerDB is based on a well known reinforcement
learning (RL) algorithm, UTC [81]. Novelty lies on the fact that learning is done in real-time, during
query execution, by slicing the query into small time batches. It proceeds to select a near-optimal
join order based on a qualitative measure, regret-bounded ratio, between anticipated execution
time and time for an optimal join order [162]. SkinnerC, perhaps the most impactful variation of
SkinnerDB, is able to outperform MonetDB, a specialized database engine for analytics, in the
single-threaded mode, due to its ability to achieve highly reduced execution time in costly queries.
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ReJOIN aims to address the difficulties in join order selection with a deep reinforcement learning
(DRL) approach [109]. ReJOIN formulates the RL minimization objective as the selection of the
cheapest join ordering with respect to the optimizer’s cost model. Each incoming query represents
a discreet time-step, upon which the agent is trained on. For the task, ReJOIN employs a neural
network trained on a policy gradient method. ReJOIN performs comparably or even better than
the optimizer of PostgreSQL. The evaluation is conducted on a dataset specifically designed for
measuring the performance of query optimizers, namely the join order benchmark (JOB) [91].
Another notable attempt is DQ [85], a DRL optimizer that exploits Q-learning in a DNN archi-

tecture to learn from a sampled cost model to select the best query plan, in terms of an optimal
join sequence. To mitigate failures in cardinality estimation regarding the cost model, DQ initially
converges on samples collected from the optimizer’s cost model [85]. Then, weights of the neural
network are stored and DQ trains again on samples gathered from real execution runs. In terms
of execution, the relative Q-function is utilized to obtain the optimal join operation. Extensive
evaluation indicates that DQ is remarkably more effective than ReJOIN, and in a wider scope of
JOB queries. Further, DQ is able to scale by incorporating more features in an effort to achieve
more accurate join cost prediction.
In adaptive query processing, an early approach picks off from Eddies [8], and leverages RL to

train optimal eddy routing policies [164]. The authors focus is on join and conjunctive selection
queries. Additionally, the proposed framework incorporates various join operators and constraints
from the state-of-the-art literature. Overall, the results indicate significance in learning an optimal
query execution plan and fast reactions to changes. This work can be considered an infant step
towards learnt query optimizers.

5.2.4 End-to-end Query Optimization. Different from the above works that focus on distinct com-
ponents of query optimizers, Neo builds an end-to-end query optimizer based on ML [110]. Neo,
short for Neural Optimizer, utilizes different deep learning models to replace each of the compo-
nents of a common optimizer. Neo relies on prior knowledge to kick-start, but continues learning
when new queries arrive. This approach makes Neo robust to dynamic environments, regarding
unforeseen queries, albeit Neo cannot generalize to schema and data changes. Neo’s contributions
are manifold. Besides adaptation to changes, Neo is able to decide between three different common
operations, namely join ordering, index selection, and physical operator selection [110]. Moreover,
Neo integrates easily with current execution engines and users can specify their optimization
objectives. Evaluations shows that Neo outperforms simple optimizers and exhibits comparable
performance to long-lived commercial ones.
Around the same time with Neo, SageDB conceptualizes the vision for a DBMS where crucial

components, including the query optimizer, are substituted with learned ones [83]. Overall, the
paper describes the design of such a system and how would all components tie together in a
complete solution. Two approaches that concern optimization of queries in a distributed setting are
Lube [172] and its sequel, Turbo [173]. Both techniques leverage ML models that concern query
execution in clusters. More specifically, Lube regards minimization of response times for a query
by identifying and resolving bottlenecks [172]. On the other hand, Turbo, aims to optimize query
execution plans dynamically [173].

5.3 Discussion on ML-based Approaches
Despite the decades of active research on DBMS and query optimization, it remains a fact that
performance is far from optimal [90, 91, 129]. Yet, the pivotal role of databases in modern systems
calls for further scrutiny. Similar to the problems in memory systems, query optimization in
databases also heavily relies on the prediction of the data pattern on which ML-based approaches
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Fig. 3. Packet classifiers map packet header fields of a packet to an action following pre-defined rules.

have demonstrated clear benefits over traditional approaches in complex scenarios. We witness
the quest to yield better performance by leveraging ML in query optimization schemes. Moreover,
we observe how multi-faceted those approaches are. For instance, ReJoin [109] and DQ [85]
utilize DRL to tackle the selection of optimal join sequences, while Kipf et al. focus on cardinality
estimation through supervised learning [79]. Additionally, when traditional approaches suffer
and as modern computational units migrate to more distributed settings, we notice significantly
broader approaches that target query processing accordingly (e.g., Turbo). More interestingly, we
are perceiving the progress of research and how it essentially dissolves into unified schemes as
recent works conceptualize end-to-end solutions (e.g., Neo and SageDB) by leveraging ML.

6 NETWORK PACKET CLASSIFICATION
Packet classification is a crucial and fundamental networking task, which enables a variety of
network services. Typical examples of such network services include traffic engineering (e.g., flow
scheduling and load balancing), access control, and firewall [55, 158]. A high-level overview of
packet classification is depicted in Figure 3. Given a collection of rules, packet classification matches
a packet to one of the given rules. Rule matching is based on certain criteria typically applied on
the fields in the packet header such as source and destination IP addresses, protocol type (often
including flags), and source and destination port numbers. Matching conditions include prefix-based
matching, range-based matching, and exact matching. Considering the ever-increasing network
traffic, packet classification dictates the need for high performance in terms of classification speed
and memory efficiency. These traits need to include also a high level of classification accuracy,
since mismatches can result in serious network issues such as security breaches.

6.1 Traditional Approaches and Limitations
The solution space for packet classification can be generally divided into hardware- and software-
based approaches. Hardware-based approaches typically leverage ternary content addressable
memories (TCAMs) and are considered the standard in industrial high-performance routers and
middleboxes. TCAM is a specialized type of high-speed memory, which stores matching rules as a
massive array of fixed-width entries [89] and is able to perform multi-rule matching in constant
time. Early work also extends TCAMs to increase performance on lookups and reduce power
consumption by utilizing a special storage block that is indexed before resolving to subsequent
lookups [146]. Although the use of TCAMs significantly boosts classification speed, these solutions
have inherit limitations including poor scalability (e.g., in range expansion), high cost, and high
power consumption [89].
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On the other hand, software-based approaches offer greater scalability but suffer performance-
wise in general. A representative family of software-based approaches is based on tuple space
introduced in [148]. These approaches partition rules into tuple categories and leverage hashing
keys for accessing the tuple space of a particular filter [158]. While yielding fast queries, the hashing
induces non-deterministic speeds on look-ups or updates [54]. Another family of software-based
approaches is based on decomposition. A noteworthy work in this family is DCFL [159], which
takes a distributed approach to filter searching. In particular, independent search engines match the
filter fields and aggregate the results in an arbitrary order [158]. However, this technique mandates
multiple table accesses, thus impacting performance [167].

Most software-based packet classification approaches are based on decision trees. The idea is to
classify packets by traversing a set of pre-built decision trees and selecting the highest priority
rule among all matched rules in one or more decision trees. To reduce the classification time and
memory footprint, decision trees are optimized to have small depths and sizes based on hand-tuned
heuristics like node cutting or rule partitioning [54, 142]. EffiCuts, which builds on its predecessors
HiCuts [54] and HyperCuts [142], significantly reduces memory footprint by employing four
heuristics: separable trees, selective tree merging, equi-dense cuts, and node co-location [167]. A
more recent work, CutSplit, optimizes decision trees on the premises of reducing rule overlapping,
unoptimized yet faster first stage cuttings, and by effective pre-cutting and post-splitting actions [94].
Another work leverages decision trees and TCAMs in a hybrid approach [82].

Limitations of traditional approaches: Current hardware- and software-based solutions
pose strong limitations to effective packet classification. As discussed, hardware approaches
fall short in terms of scalability and exhibit significant monetary and power costs, while
software solutions rely on hand-tuned heuristics. Heuristics can be either too general to
exploit the characteristics of a given rule set or too specific to achieve good performance
on other rule sets. In addition, the lack of a specific, global optimization objective in the
heuristic design can result in sub-optimal performance. Finally, the incorporation of different
heuristics into a single solution can incrementally increase the overall complexity of the
approach, hindering optimization due to difficulty in understanding them.

6.2 ML-based Approaches
ML for packet classification typically replaces the classifier with a model pre-trained with supervised
learning. However, with the recent advances in deep reinforcement learning (DRL), the solution
space of packet classification approaches broadens. In general, there are three categories: (1) using
supervised learning to replace the classifier with a trained model, (2) using reinforcement learning
agents to generate suitable decision trees at runtime according to the given set of rules, and (3)
leveraging unsupervised learning to cluster unforeseen traffic.

Approach (1) fits naturally since packet classification is by definition a classification task. These
approaches commonly utilize a traditional supervised learning setting where information concern-
ing incoming traffic is known a priori and traffic is classified into distinct labeled sets. Traditional
supervised learning proposals for packet classification have also been reviewed extensively in
[124]. Yet, the first remarkable work in this direction that leverages deep learning targeting traffic
classification is only recently introduced with Deep Packet [100]. This work leverages convolu-
tional neural networks (CNNs) to construct a traffic classifier that is able to characterize traffic and
identify applications without given advanced intelligence (i.e., hand-tuned features). Despite the
promising results, the accuracy requirement of packet classification renders the neural network
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based approach impractical. This is because neural networks cannot guarantee the correct matching
of rules. Moreover, the size of the neural network has to be big enough in order to handle a large
set of rules. Thus, achieving high performance is very unlikely without hardware accelerators like
GPUs [97]. Further, supervised learning schemes are generally limited by design as supervised
learning necessitates certain information is known in advance [130].

Approach (2) learns at the meta level where we learn to generate appropriate decision trees and
use the resulting decision trees for actual packet classification. This way, ML methods are out of the
critical path so performance is no longer an issue. NeuroCuts is to the best of our knowledge the
first work that employs a DRL method for decision tree generation [97]. NeuroCuts employs a DRL
approach in a multi-agent learning setting by utilizing an actor-critic algorithm based on Proximal
Policy Optimization (PPO) [137]. An agent executes an action in each discrete time step with the
target of obtaining a maximized reward. The action depends on the observed environment state.
Following the same footsteps, Jamil et al. introduce a classification engine that leverages DRL to
generate an optimized decision tree [70]. In detail, the derived tree concentrates the essential bits
for rule classification into a compact structure that can be traversed in a single memory access [70].
Then, the outcome of the traversal of the generated tree is utilized in the original tree to classify
packets. This results in lower memory footprint and higher packet classification speed.

Finally, following approach (3), Qin et al. leverage an unsupervised learning scheme to mitigate
drawbacks of prior supervised learning solutions [130]. As mentioned in their work, existing
supervised approaches fail to adjust to network changes as unforeseen traffic arrives and clas-
sification performance deteriorates. Besides, the authors advocate in favor of link patterns as a
crucial property on network knowledge, while most approaches utilize only packet-related features.
They propose a novel combinatorial model that considers both sources of information (packet and
link patterns), in a clustering setting [130]. The approach is evaluated against several baselines of
supervised and clustering algorithms and is able to outperform all of them, building a strong case
for traffic classification with unsupervised learning.

6.3 Discussion on ML-based Approaches
Recent works in packet classification provide us with several useful insights. First, we observe
that technological advancements in ML drive stimuli in the way researchers approach now the
challenge of packet classification. For instance, typical solutions that used to solely focus on training
packet classifiers have now diverged to more radical, unorthodox approaches. Second, we can see
that significant effort has been put towards leveraging DRL-based solutions, perhaps the most
recently advanced and trending research domain for the past few years. Third, we observe that
ML often entails more performance metrics than common approaches. For example, classification
accuracy is a critical metric in packet classification with supervised learning, whereas hardware-
based approaches (e.g., TCAMs) do not impose such constraints. Finally, we can deduce that as
the scope of work widens, more and more works that target similar directions will be explored
and proposed. For example, Li et al. propose a novel way of caching rules into memory with LSTM
neural networks, which can be directly exploited for packet classification [93]. Overall, ML-based
approaches address the limitations of traditional approaches by being more generalizable, being
able to incorporate complex optimization goals, and reducing the design complexity. However,
they still fall short for critical scenarios due to the lack of guarantee in results and explanability. In
scenarios where accuracy is of critical importance, traditional approaches would still be preferable.

7 NETWORK ROUTING
Traffic Engineering (TE) is the process of optimizing performance in traffic delivery [175]. Perhaps
the most fundamental task of TE is routing optimization, a path selection process that takes place
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between or across networks. More specifically, packet routing concerns the selection of a path
from a source to a destination node through neighboring nodes. In each traversing node, routing
aims to answer the question which adjacent node is the optimal node to send the packet. Common
objectives of packet routing involve optimal time to reach destination, maximization of throughput,
and minimum packet loss. It should be applicable to a broad variety of network topologies.

7.1 Traditional Approaches and Limitations
Routing is a broad research subject with a plethora of differing solutions and approaches proposed
over the years. Routing commonly differentiates between intra- and inter-domain. The former
concerns packets being send over the same autonomous system (AS) in contrast with the latter,
which regards sending packets between ASes. Routing can also be classified based on enforcement
mechanisms or whether it concerns offline/online schemes, and furthermore on the type of traffic
per se [175]. Based on this wide taxonomy, which only expands with emergent network topologies,
there are distinct types of proposed solutions, as well as research that typically considers a more
fine-grained domain of routing optimization. As our interests lies mostly in computer systems,
we concentrate mainly on intra-domain traffic engineering. A comprehensive survey that covers
routing optimization on a coarse-grained manner that concerns traditional networks and topologies
is presented in [175]. For surveys on routing in wireless sensor networks and ad-hoc mobile
networks, we refer the readers to [5].

Regarding intra-domain traffic engineering, open shortest path first (OSPF) solutions are prevalent
favoring simplicity but often suffer in performance. OSPF solutions cope well with scalability
as network growth has reached an all-time high, but have pitfalls when it comes to resources
utilization [115]. As in the case of packet classification, common OSPF proposals are based on hand-
tuned heuristics [147]. Moreover, most of existing literature that aims to meditate the performance
boundaries set by OSPF approaches, have seen rare actual implementation [115].
In addition, we find it necessary to add some notes about software-defining networking (SDN).

Conventional, non-SDN, network devices embed dedicated software to implement networking
logic, such as packet routing, and are characterized by long and costly evolution cycles. SDN
reduces networking devices to programmable flow-forwarding machines, with networking logic
now running at a logically centralized controller, adding more flexibility in programming the
networking behaviors [112]. SDN can therefore be seen as a way to implement routing decisions at
network devices, but it does not change the nature of the routing problem, which now needs to
be solved by the controller. We do not go further into such implementation details and refer the
readers to published surveys in this area, e.g., [42].

Limitations of traditional approaches: The main challenge of network routing consists
in the ever-increasing dynamics of the networks, including the traffic loads as well as
the network characteristics (e.g., topology, throughput, latency, and reliability), and the
multi-faceted optimization goals (reflecting the user quality of experience ultimately), which
are hard to be interpreted as a simple formula for handcrafted heuristics to optimize. The
implementation complexity of network routing optimization is also a practical concern.

7.2 ML-based Approaches
The first work involving ML on the challenge of traffic engineering dates back to 1994, namely
Q-Routing [15]. Leveraging a fundamental RL algorithm, Boyan et al. propose a learning-based
approach to tackle the problem. Q-Routing derives from Q-learning [177], and is able to generate
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an efficient policy with a minimization objective—the total time to deliver a packet from source to
destination. By conducting a series of experiments on different network topologies and dynamic
networks, Q-Routing exhibits significant performance gains, especially on congested network links,
over static approaches. More importantly, Q-Routing establishes RL as a natural fit to the problem
and paved the way for research on learnt systems for traffic engineering.
Since the introduction of Q-Routing, several works have emerged that utilize alternative rein-

forcement learning methods or study various network topologies and scope of applications. A
comprehensive survey of these solutions w.r.t. all known network topologies, i.e., from static to
dynamic vehicular and ad-hoc networks, is provided in [104]. However, it is clear from the survey
that when it comes to implementation, the tremendous state and action space quickly becomes a
hefty burden in learning and thus results in sub-optimal solutions. The application of deep learning
to network traffic control and essentially routing optimization has been studied in [44, 105, 165]. In
detail, Fadlullah et al. take a high-level overview of what is comprised as a supervised learning
scheme with deep belief networks (DBNs) [26], which predicts on a node basis the next path (i.e.,
router) to deliver to and in turn, the destination node does the same and so forth [44]. In this
approach, each node is solely responsible for outputting the next node and the full delivery path
is uncovered in a hop-by-hop manner. Interestingly enough, Mao et al. take a similar supervised
approach with Deep Belief Architectures (DBAs) in their work [165]. Even though both approaches
are novel and interesting first-steps, they are applied in a constrained static setting raising questions
that come naturally as how supervised learning can be scaled and applied efficiently into dynamic
and large network topologies.

Mao et al. bring reinforcement learning back on the table in [165]. Initially, the authors evaluate
a supervised learning scheme through varying DNN architectures. By observing past Demand
Matrices (DMs) the neural network learns to predict the DMwhich is then leveraged to calculate the
optimal routing strategy for the next epoch. The evaluation results, however, show that supervised
learning is not a suitable approach for dynamic settings. The authors therefore employed DRL and
interchanged the prediction of DMs to learning a good mapping policy. Also, the design shifts to a
more constrained setting, focusing on destination-based routing strategies. The agent’s reward is
now based on max-link-utilization, and the algorithm of choice is Trust Region Policy Optimization
(TRPO) [136]. As the large action space can cripple the learning process, the number of output
parameters is reduced by shifting learning to per-edge weights. While this DRL-based mechanism
yields better results, compared with the supervised solution, the proposed solution is not significant
enough to alter the domain of routing as it is.
To mitigate the risk of state space explosion and significant overhead of globally updating a

single agent, a distributed, multi-agent approach is applied in [191]. In particular, You et al. pick up
where [15] left off. As a first step, they upgrade the original Q-Routing contribution by exchanging
the Q-Table with a DNN, namely deep Q-Routing (DQR), but leaving the remainder of the algorithm
pristine. In contrast to the semantics of the approach, the authors differentiate their proposal by
specifying a multi-agent learning environment. As such, every network node holds its own agent,
and each agent is able to make local decisions deriving from an individual routing policy.

Limitations of the proposed ML and DL schemes to revolutionize the domain of routing led Varela
et al. to argue that simply applying state-of-the-art algorithms and techniques is not sufficient
when it comes to networking challenges [153]. Instead, Varela et al. shift their focus on feature
engineering and further outline that a complete yet simple state representation might be the key
to overcome the hurdles [153]. Furthermore, Varela et al. propose a DRL scheme that integrates
telemetry information alongside with path level statistics to provide a more accurate representation
for the purpose of learning [153]. Reportedly, their proposed scheme integrates better to various
network configurations.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Machine Learning for Computer Systems and Networking: A Survey 1:19

Other recent works also base their ideas on feature engineering and argue that achieving
generalization is the key to success [99, 134], especially when dealing with network dynamics. Rusek
et al. take a supervised learning approach with graph neural networks (GNNs) introducing RouteNet
that aims to generalize over any given network topology by making meaningful predictions on
performance metrics [134]. Using these predictions, it is able to select a suitable routing scheme that
abides by the environment constraints. Meanwhile, DRL-R contributes a novel combinatorial model
that integrates several networks metrics to address shortcomings of existing DRL schemes [99].

7.3 Discussion on ML-based Approaches
While a lot of effort has been made on the fundamental challenge of routing optimization, we are
confident to say that the task is far from complete and continues to remain an active research
domain. Purely from an ML perspective, we can obtain several useful insights for aspiring scholars
and researchers. For one, while routing optimization fits naturally to reinforcement learning-based
approaches, this does not strictly bind that achieving optimal results is a matter of learning paradigm.
We saw several works attempting to leverage supervised learning techniques for that matter. On the
other hand, taking into consideration that most deep learning approaches initiated with supervised
learning and then shifted to reinforcement learning, evidence might suggest otherwise. Besides,
we observe great potential of applying distributed, multi-agent, DRL-based approaches, as they can
effectively mitigate the risk of state and action space explosion and improve the generalization
properties of the learned algorithms. These traits make them a better fit to address the routing
problems in large and dynamic environments such as carrier networks.

8 CONGESTION CONTROL
Congestion Control can be characterized as a remedy for crowded networks [66]. It concerns actions
that occur in event of network changes as a response to avoid collisions and thus network collapse.
Network changes in this domain regularly refer to changes in the traffic pattern or configuration,
resulting in packet losses. A typical action to avoid collapse is for the sender to decrease its sending
rate, e.g., through decreasing its congestion window. TCP, the de facto network transport protocol
that the Internet relies on for decades, suffers frommany limitations. With TCP being architecturally
designed at 1980s, it is natural that the original specification contains network behaviors observed
at the time [178]. It is also the case that emerging ad-hoc and wireless networks are being hampered
by the lack of flexibility inherited by TCP [9]. That being said, it has been shown that the congestion
control scheme of TCP is often the root cause for degraded performance. Interesting literature has
displayed the symptoms of current congestion control mechanisms, such as bufferbloat [48] and
data-center incast [20].

8.1 Traditional Approaches and Limitations
Congestion control has drawn a lot of research attention in the past decades and is still a very
active domain. Various techniques have been proposed, mainly relying on human expert designed
heuristics. In particular, IETF has proposed a series of guidelines to aid network designers in
meditating TCP’s innate drawbacks [75]. These mechanisms usually apply end-to-end techniques,
altering TCP by tuning the congestion window rolling as a mean to achieve better performance.
This is done based on a number of factors and often simplifying or constraining assumptions
about network conditions. Placing significant approaches in a chronological order we display quite
a long list of literature: Vegas [16], NewReno [61], FAST TCP [157], CUBIC [56], and BBR [17].
Other more recent approaches with a focus on subsets of congestion control such as short-flows or
data-centers are found in [92, 119, 180, 193]. Extension of congestion control to multipath scenarios,
i.e., multipath TCP [46], have been explored in various studies, notably [77] and [127]. As it is
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not feasible to cite all the related work, we refer the readers to [88] for further discussion about
congestion control of TCP and its many different variants.

Limitations of traditional approaches: The assumptions commonly formulated regard-
ing network conditions in the aforementioned literature are often far from being realis-
tic. Despite the evaluations demonstrating significant results, applications of traditional
solutions to real-network traffic exhibit strong signs of degraded performance and under-
utilization of resources [34]. This is where applying machine learning techniques, and
specially model-free approaches such as deep learning, become useful.

8.2 ML-based Approaches
In the congestion control scenario, ML is capable of setting clear and direct optimization objectives
to eliminate the rather unknown goals that current setting holds. Additionally, with ML we can
generate online learning control algorithms that are able to adjust to constantly changing net-
work conditions. To incrementally progress towards our goal, existing domain knowledge can be
incorporated to arrive at better learnt solutions.
To the best of our knowledge, Remy [179] is the first to utilize ML for learning a congestion

control algorithm. Remy formulates an offline learning environment, in a decentralized manner,
similar to what we have seen already in Section 7.2 as POMDPs. Agents sit on the endpoints
and every time step take a decision between send and abstain. Remy is trained under millions of
sampled network configurations, through which it is able to come along with the optimal control
strategy within a few hours of training. RemyCC, the output control algorithm, is employed on the
current TCP stack and the evaluation suggests that it is able to outperform several state-of-the-art
solutions. However, Remy does not manage to escape the pitfall of underlying assumptions. The
training samples that Remy builds upon place constraints on RemyCC due to assumed network
configurations under which they are sampled. This limits Remy’s state-action space, and can heavily
affect performance when those conditions are not met.
In contrast to Remy, PCC Allegro [34] attempts to tackle inherit limitations of predefined

assumptions on the network by conducting micro-experiments. In each experiment, an appropriate
control action is taken based on which the learner optimizes towards a “high throughput, low loss"
objective named utility. Then, Allegro learns empirically to make better decisions by adjusting to
control actions that yield higher utility. Following Remy’s example, each sender in Allegro makes
decisions locally based on the outcome of themicro-experiments [34]. Allegro scheme does not make
assumptions about network configurations. This translates to sharply greater performance in real-
network scenarios. Despite the effort, Allegro’s convergence speed and towards-TCP-aggressiveness
frame it as prohibitive for deployment [35].

In an attempt to eliminate Allegro’s limitations, Dong et al. introduce Vivace [35]. Vivace replaces
the two key components of Allegro: (1) the utility function and (2) the learning algorithm of rate-
control. For the utility function, Vivace integrates RTT estimations via linear regression to penalize
for high latency and loss [35]. Through latent-aware utility, Dong et al. show that Vivace can achieve
fairness while mitigating bufferbloat and remaining TCP-friendly. For the rate-control algorithm,
Vivace employs gradient-ascent-based no-regret online optimization [199]. The no-regret part
translates to a minimum guarantee towards performance. Further, Vivace’s rate-control scheme
enables faster convergence and subsequently faster reaction to network changes [35].
Pantheon initiated as a playground with a focus on congestion control, where researchers can

benchmark their proposals with other state-of-the-art literature and evaluate performance on
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shared metrics and measurements [186]. Pantheon leverages transparency by keeping a public
record of results. Besides the shared platform for knowledge, the authors introduced Indigo—an
offline neural network based approach to congestion control. Indigo utilizes an LSTM recurrent
neural network [60] and trains it with an imitation learning algorithm called DAgger [133]. Indigo
employs generated data from optimal solutions that display correct mappings from state to actions.
Based on this training, Indigo is able to adjust its congestion window once an ACK is received [186].
Indigo exhibits relatively comparable performance to other schemes in Pantheon’s platform.

Aurora employs DRL to extend Allegro and Vivace [71]. Similarly to these solutions, it controls
the sending rate per time-step, but the learning scheme incorporates into its observed history both
latency gradient and ratio from [34, 35] respectively, as well as sending ratio which is specified
as the ratio of packets sent to packets acknowledged by the receiver. The reward setting praises
throughput and penalizes latency and packet loss, with packet loss referring to packets that have
not been acknowledged. A RL agent is trained with a utilization of an algorithm first introduced
in section 6.2, namely PPO. With a relatively simple neural network configuration, Aurora is able
to generalize well to a good mapping of sending rates outside of its environment scope. This
establishes Aurora as a robust solution which can be applied to dynamic networks which exhibit
unpredictable traffic conditions. In contrary to its robustness, Aurora is comparably similar in terms
of performance to other state-of-the-art schemes.

Most recent studies tackle issues related to generalization and convergence speed. Specifically, a
practical, hybrid approach is proposed in [1], which combines classic congestion control techniques
with DRL techniques, improving the generalization toward unseen scenarios. The idea is to have
two levels of controls: fine-grained control using classic TCP algorithms, e.g., BBR, to adjust the
congestion window, and hence the sending rate, of a user, and coarse-grain control using DRL to
calculate and enforce a new congestion windows periodically, observing environment statistics. The
proposed solution therefore has more predictable performance and better convergence properties,
showing how learning from an expert, e.g., BBR algorithm, can improve the performance, in terms
of convergence speed, adaptation to newly seen network conditions, and average throughput [41].
Applying DRL to multipath scenarios is also getting a boost. Notably, a centralized solution is

proposed in [184], with a single agent trained to perform congestion control for all the MPTCP
flows in the network. Such centralized solutions, however, are not scalable, as they require a global
view of all available resources and active MPTCP flows in the network. A distributed solution is
proposed in [95], where multiple MPTCP agents, each running at a sender node, are learning a set
of congestion rules that enable them to take appropriate actions observing the environment. The
learning is performed in an asynchronousmanner, where each node requires only local environment,
state, and information. Further, as state is defined in a continues, high-dimensional space, tile coding
methods are applied to discretize the state dimension, addressing the scalability issue. The proposed
solution, however, relies on offline learning and hence has limited generalization capabilities.
In contrast, an online convex optimization is explored in [50], which extends PCC to multipath
settings, showing through theoretical analysis and experimental evaluation that the proposed
online-learning solution is scalable and that it can significantly outperform traditional solutions
and better adjust to the changes in the network conditions. However, no comparison among these
deep reinforcement learning methods is provided.
Finally, DeePCCI [135] proposes a novel classification scheme for identification of congestion

control variants using deep learning. The authors solely-regard packet arrival time of a flow as
their input arguing on the fact that congestion control is strongly associated with packet timings.
Additionally, fewer features directly translate to the ease of adaptation and applicability to other
congestion control schemes. The classifier is trained and evaluated against CUBIC, RENO, and BBR
with generated labeled data as necessitated for supervised learning.
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Fig. 4. An overview of adaptive video streaming.

8.3 Discussion on ML-based Approaches
As one of the oldest and most established area in networking, congestion control has attracted
rich research attention, in both traditional and ML-based domains, with many papers published
recently to adopt deep learning techniques. These studies show the capability of deep learning
techniques, and specifically deep reinforcement learning techniques, to overcome the limitations of
traditional solutions. By learning adaptive mechanisms, these ML-based solutions are able to adjust
to constantly changing network conditions and hence better utilize the resources. The majority
of these solutions, however, focus on centralized or off-line learning, with only very few tackling
the online learning in a distributed setting – the case for TCP. More work should be done in this
direction. Besides, most of these studies focus on proposing solutions that outperform current
mechanisms, without really changing the objectives and the goals.

9 ADAPTIVE VIDEO STREAMING
As multimedia services such as video-on-demand and live streaming have witnessed tremendous
growth in the past two decades, video delivery, nowadays, holds a dominant percentage of overall
network traffic on the Internet [170]. Current video streaming services are mostly based on adaptive
bitrate (ABR), which splits a video into small chunks (a few seconds long) that are pre-encoded
with various bitrates and streams each of the chunks with a suitable bitrate based on the real-
time network condition. ABR is behind many mainstream HTTP-based video streaming protocols
including Microsoft Smooth Streaming (MSS), Apple’s HTTP Live Streaming (HLS), and more
recently Dynamic Adaptive Streaming over HTTP (DASH) standardized by MPEG [143].
An overview of adaptive video streaming is depicted in Figure 4. The bitrate selection for each

chunk is dictated by an ABR algorithm running on the client side, which takes real-time throughput
estimations and/or local buffer occupancy as input and optimizes for the quality of experience
defined as a combination of metrics including re-buffering ratio (the percentage of time the video
playback is stalled because of drained buffer), average bitrate, bitrate variability (to improve playback
smoothness), and sometimes also the startup delay (the time spent between user clicking and the
playback starts). Considering that the network status suffers from high dynamics, designing a
good ABR algorithm is non-trivial. This has been confirmed in an early measurement study which
shows significant inefficiencies of commercial and open-source ABR algorithms [3]. As a result,
many new ideas have been explored to improve adaptive video streaming. Here, we focus on the
advancements on client-side ABR algorithms.

9.1 Traditional Approaches and Limitations
Early ABR algorithms can be generally categorized into two families: rate-based and buffer-based
(including the hybrid ones). Rate-based ABR algorithms typically rely on estimating network
throughput based on past chunk downloads information [72, 96, 171, 200]. The ABR algorithm then
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selects the highest possible bitrate that can be supported by the predicted network throughput.
To reduce prediction variability, ABR algorithms usually smooth out the predictions. For example,
FESTIVE uses the experienced throughputs of past 20 samples to predict the throughput for the next
chunk and adopts the harmonic mean to reduce the bias of outliers [72]. Noticing that the measured
TCP throughput may not reflect precisely the available real network throughput, PANDA proposes a
“probe and adapt” method, similar to TCP’s congestion control, but at the chunk granularity to stress
test the real network throughput [96]. SQUAD takes running estimates for the network throughput
which acknowledges the impact of the underlying TCP control loop and takes into account the time
scale to improve smoothness and reliability. It then uses a spectrum-based adaptation algorithm for
the bitrate selection [171].
Buffer-based ABR algorithms leverage the buffer occupancy as an implicit feedback signal for

bitrate adaptation [62, 160], often also in combination with throughout prediction [189]. Huang et
al. advocate for a pure-buffer-based design, which incorporates bandwidth estimation whenever
needed (e.g., during the session startup). They model the dynamic relationship between the buffer
accuracy and bitrate selection and propose a buffer-based ABR algorithm called BBA [62]. Simi-
larly, BOLA is solely buffer-based, where the bitrate adaptation problem is formulated as a utility
maximization problem and solved by an online control algorithm based on Lyapunov optimization
techniques [145]. MPC is a hybrid approach that integrates both the throughput and the buffer
occupancy signals [50]. More specifically, MPC models bitrate selection as a stochastic optimal
control problem with a moving look-ahead horizon and leverages model predictive control (MPC)
to perform bitrate selection. To reduce the high computation, FastMPC proposes to use a table
enumeration approach instead of solving a complex optimization problem as in MPC. ABMA+
pre-computes a buffer map which defines the capacity of the playout buffer required under a given
segment download condition to meet a predefined rebuffering threshold and uses the map to make
bitrate adaptation decisions [10].

Limitations of traditional approaches: ABR algorithms typically rely on accurate band-
width estimation which is hard to achieve with simple heuristics or statistical methods.
Also, ARB algorithms make adaptation decisions based on the bandwidth estimation with a
complex relationship between the two, rendering simple heuristic approaches general to all
scenarios ineffective.

9.2 ML-based Approaches
As discussed above, ABR algorithms typically involve bandwidth estimation, a complex control
logic, or both, where we can leverage existing ML methods: the bandwidth estimation problem
can be treated as a general regression problem, while the control problem can be treated as a
decision-making problem. In fact, existing work on applying ML in adaptive video streaming can
be generally divided into these two lines. We will discuss these two lines separately.
The first research line aims to achieve better accuracy in bandwidth estimation. Bandwidth

estimation is a general and well-studied problem that has its presence in many of the Internet
applications [68, 69]. ExistingML-based approaches for bandwidth estimationmainly focus on using
methods like Kalman filter [40] or neural networks [43, 78] to perform the prediction. In the context
of adaptive video streaming, CS2P aims to improve bitrate adaptation by adopting data-driven
approaches in throughput prediction [154]. The authors make two important observations: (1)
There are similarities in the throughput pattern across video streaming sessions. (2) The throughput
variability within a video streaming session exhits stateful nature. Based on the first observation,
the authors cluster similar sessions and use the clustering result to predict the initial throughput of
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a session. Using the second observation, they propose a Hidden-Markov-Model based method to
explore the stateful nature of throughput variability to predict the throughput.

The second line of research focuses on leveraging machine learning, RL in particular, techniques
for adaptation decision making. By penalizing on detrimental factors that negatively affect the
optimization objectives, RL can learn from expererience an optimal strategy for bitrate selection,
and replace existing heuristic-based schemes that suffer in generalizing to dynamic networks. RL
can exploit the low level system signals that are essetial for ABR algorithm design but are hard
to be modeled and considered due to the inherent complexity. Besides, RL-based approaches are
typically more flexible and can be generalized to different network conditions.

Claeys et al. try to replace used heurisitics in the HTTP adaptive streaming client by an adaptive
Q-learning-based algorithm [25]. Q-learning is a model-free reinforcement learning algorithm
that can make bitrate adaptation decisions by calculating the Q-value representing the quality
(i.e., QoE) of decisions under varying network conditions. While showing promising results, this
initial attempt is bounded by an explosive state-action space that burdens the convergence speed,
resulting in slow responses to network variations. In a follow-up work [24], the authors apply
several optimizations using a variant of Frequency Adjusted (FA) Q-learning. The new method
alters Q-value calculation leading to quicker fitting in network fluctuations. In addition, the authors
significantly reduce the environment state parameters and manage to achieve faster convergence.
Several studies formulate the bitrate adaptation problem as a Markov Decision Process (MDP)

with a long-term reward defined as a combination of video quality, quality fluctuations, and
rebuffering events [21, 47, 107, 198]. As one example, mDASH proposes a greedy algorithm to solve
the MDP, which results in suboptimal adaptation decisions but is efficient and lightweight [198].
Chiariotti et al. [21] propose a learning-based approach leveraging reinforcement learning to solve
the MDP. To boost learning speed, the proposed learning approach utilizes Post-Decision States
(PDSs) [111]. In combination with what is known as off-policy learning and softmax policy, the
proposed approach is able to converge fast enough to react to network changes.
To combat the innate limitations of Q-learning, D-DASH leverage deep learning where where

instead of enumerating all the Q-values a deep neural network is used to approximate the Q-
values [47]. Trading-off performance with converge speed, D-Dash employed four variations of
deep neural network architectures, and tested under several environments. Comparable to the
state-of-the-art and fairly fast, D-Dash definitely sets the pace for more deep learning approaches
in upcoming research. Another DL-based approach is called Pensieve [107], which differentiates
from the herd by utilizing a deep neural network that is trained with state-of-the-art A3C algo-
rithm [120]. Pensieve is trained offline in a multi-agent setting that speeds up learning on a plethora
of network traces. Besides evaluations in a simulated environment, Pensieve is also tested against
real network conditions. Pensieve is able to outperform baseline ABR algorithms on shared QoE
metrics. Moreover, Pensieve’s ability to incorporate throughput history is a key aspect.
The above list of ABR algorithms is far from complete. For a comprehensive survey of existing

ABR algorithms please refer to [11]. Apart from designing new ABR algorithms, researchers have
also explored how to tune a given ABR algorithm under various network conditions. For example,
Oboe is such a method that auto-tunes ABR algorithms according to the stationality of the network
throughput [4]. In [168] the authors propose to leverage reinforcement learning to configure the
parameters in existing ABR algorithms, achieving better bandwidth awareness.

9.3 Discussion on ML-based Approaches
Adaptive video streaming is a well-formulated problem that has attracted tremendous research
efforts in the past decade. Both traditional approaches based on heuristics or control theory and
ML-based approaches have been explored. It is evident that deep reinforcement learning based
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approaches have a great potential for bitrate adaptation due to its innate advantage of capturing
complex variability in network bandwidth [107]. Choosing the right data set and allowing for
enough training seem critical to the performance of DRL-based approaches, and it is unclear if
solutions like Pensieve can be generalized to any network environments with varying conditions.
Overall, DRL-based approaches are more capable of capturing the network dynamics and the
complex relationship between bandwidth estimation and adaptation decisions than traditional
heuristics-based approaches. Yet, DRL-based approaches require a lot of data and resources to train
an accurate model, which can be an intimidating factor for many video streaming service providers.
In such cases, traditional approaches based on control theory might be a better option.

10 DISCUSSION AND FUTURE DIRECTIONS
Despite all the praise and recent remarkable publications that regard the application of ML in
computer systems, ML is not panacea and should not be treated as such. There are still challenges
that lie ahead before deploying learnt systems in real-world scenarios. So far, we have witnessed
mostly the beneficial progress of reviewed applications and albeit this is sufficient to intrigue
researchers to investigate more, we also ought to raise awareness when it comes to integration of
ML techniques in complex systems. That being said, in this section, we aim to outline and discuss
current known limitations in the literature we have reviewed, whilst, offering approaches that
might assist in future research.

Explainability. Some recent studies [32, 197] try to shed light on limitations of ML systems.
Interestingly, both address ML-based solutions as “black-box approaches” and focus on the lack
of interpretability of ML models. Especially in DNNs with multiple hidden layers, we cannot
sufficiently capture, or better yet rationalize, the logic behind the decision-making process of these
complex models and architectures. As further discussed in [197], this leads to several ambiguities
and trust issues, especially when it comes to the process of debugging such complex structures.
On the other hand, simpler and intuitive models are burdened with deteriorated performance and
poor generalization [32]. Moreover, DNNs are subjective to unreliable predictions when input
does not match the expectations assumed on training [197]. Specific research questions to explore
include: (1) How to come up with clear guidelines (e.g., for determining DNN architectures and
hyper-parameters) on the design of ML-based solutions? (2) How to open up the black box of DNNs
and incorporate domain expertise in the decision-making process?

Training overhead. Besides explainability, training times and the associated costs are another
significant drawback. For instance, as we have seen in [188], where each video is trained separately
for efficient delivery, it requires approximately ten minutes of training per minute of video or
in cost-wise, 0.23 dollar. Putting it into perspective, consider the well-known YouTube platform.
YouTube, the de facto platform for video streaming is estimated to have around 500 hours of videos
uploaded every minute [150]. In combination with training time, it would be impossible to handle
the training for all videos with such tremendous growth. In terms of cost efficiency, consider that
only a relatively small amount of videos from the total uploads will convert into revenue, hence,
we can deduct that supporting such a large-scale content-aware delivery system is practically
impossible. The following research questions would be interesting to explore: (1) Can we train
the DNNs with just a small amount of data? (2) How to apply transfer learning to reuse DNNs in
scenarios that are similar in structure but different in detail?

Lack of training data. Related to training times, lies also the concern of training data. Due to
the fact that sufficient and effective training necessitates large volumes of data, many of the existing
studies rely on generated samples or existing datasets to train their models. For instance, both
Wrangler [185] and CODA [196] train on datasets composed of traces that stem from production-
level clusters. On the other hand, MSCN [79] generates training data from sampled queries that are
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based on “schema and data information”. This results into two major concerns. First, it has to be
ensured that training samples are sufficient and cover the whole problem space [76]. Otherwise, we
might be looking into a solution that does not generalize well in real-world scenarios. Second, as
mentioned in [197], there are adversarial inputs that can be the root cause of degraded performance.
The following research questions need to be answered: (1) Can we build a common training
ground for DNN training without leaking sensitive data to the public? (2) How to achieve scalable
incremental training so the system can learn on the fly over time?

Energy efficiency. Training a large DNN could also has substantial environmental impacts. A
recent study [152] shows that the carbon emission of training a BERT model on current GPUs is
roughly equivalent to a trans-American flight. To reduce the carbon emission of such training,
one can improve the hardware design or the algorithm, to reduce the complexity or training time.
Harvesting green energy resources, such as solar cells or wind turbines, for training is another way
to make such training greener and hence more sustainable. But this requires advances in distributed
learning technologies, where the training of a large DNN can be distributed all over the network,
and closer to the edges where green energy resources are available. Despite some advances in the
field of distributed learning, e.g. by proposing federated learning [113], the green learning aspect of
it has not yet been covered. We identify the following specific research questions: (1) How to design
more energy-efficient ML methods (for both training and inference)? (2) How to use distributed
learning techniques to avoid bulky energy consumption in central places?

Real-time performance. A final implication of ML approaches is that of inference time. Real-
time applications require fast inference of ML models, as in the case of autonomous driving, where
hardware accelerators are employed so the system can make safety-critical decisions locally [98].
This hurdle composes also the main idea and contribution of [176], where supervised learning is
applied to enhance vision analytics tasks on cloud operations. Expanding to other domains where
speed is crucial, e.g., routing and congestion control, we can understand how slow inference of
models, especially in DNNs, can reduce the performance gains significantly. This can add up to
an overall comparable performance with traditional solutions, in which an operator will prefer
the traditional solution for simplicity and better understanding [197]. Specific research questions
include: (1) How to make ML-based methods lightweight when applied in the critical path of
computer systems and networks? (2) Can we use a light-weight method on the critical path while
leveraging ML-based methods on the non-critical path?
Taking all aforementioned limitations into account, it is safe to suggest that ML for computer

systems and networking is still at an infant stage. Even though we have witnessed remarkable
progress, we need to tread lightly when it comes to deploying systems that heavily depend their
operation on ML approaches, due to the fact the we might end up with a sub-optimal solution,
compared to the one we are seeking to alleviate. While it is unclear how to integrate existing domain
knowledge [32], it is argued that this is the key to overcome current drawbacks [197]. Doing so, the
authors suggest that commons limitations, and in particular transferability, robustness and training
overhead will be essentially mitigated. Furthermore, a recent work from Kazak et al. proposes a
novel system to verify DRL systems [76]. Verily, the aforementioned system, is a first step towards
formal verification of DRL models. The authors contribution aims to verify that learnt systems
deliver what they advocate for. Verily has been evaluated already on Pensive [107], DeepRM [106],
and Aurora [71], and constitutes a first step towards alleviating current limitations.

11 SUMMARY
In this survey we summarize research work regarding ML on computer systems and networking.
Whether it concerns achievements or comes with limitations, we attempt to present an overall
picture that exhibits current progress and exploits how ML can blend in various contexts and
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settings, and above all, motivate researchers to conceptualize and utilize ML in their field of
research. We first formulate a taxonomy divided into distinct areas and sub-areas of expertise, in a
quest to familiarize the reader with the greater picture. Eventually, we discuss each sub-domain
separately. Per se, we formulate a short description of the problem and present the traditional
approaches up to date and discuss the limitations of the traditional approaches. Then, we proceed
to present the state-of-the-art of ML-based approaches and analyze significance of their results,
limitations, and how far we are from an actual implementation in systems. We conclude the survey
by discussing future directions to explore.
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