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Abstract—Today’s low-power devices, such as smartphones and
wearables, form a very heterogeneous ecosystem. Applications in
such a system typically follow a reactive pattern based on stream
analytics, i.e., sensing, processing, and actuating. Despite the
simplicity of this pattern, deciding where to place the processing
tasks of an application to achieve energy efficiency is non-trivial
in a heterogeneous system since application components are
distributed across multiple devices.

In this paper, we present Aves – a decision-making engine
based on a holistic energy-prediction model, with which the
processing tasks of applications can be placed automatically in an
energy-efficient manner without programmer/user intervention.
We validate the effectiveness of the model and reveal several
counter-intuitive placement decisions. Our decision engine’s im-
provements are typically 10-30%, with up to a factor 14 in the
most extreme cases. We also show that Aves gives an accurate
decision in comparison with real energy measurements for two
sensor-based applications.

I. INTRODUCTION

With the introduction of Internet-of-Things and 5G, smart

sensors will become ubiquitous and will generate massive

amounts of data. These sensor-based Big Data are of in-

creasing importance in many fields, such as smart homes,

cities, or farming [1], [2]. Such sensors are building blocks

of an extremely heterogeneous ecosystem: different devices

have different processing power, battery capacity, networking

capabilities, and programming environments. Therefore, it is

essential to provide a programming environment with which

energy-efficient sensor-based applications can be conveniently

built.

To reduce application development complexity and aid

processing task offloading decisions, we advocate a framework

that helps programmers by providing a set of unified APIs

that are easy to use, and allow for automatic processing

task placement decisions based on device capabilities and

application processing complexity.

One crucial deciding factor for processing-task placement is

the maximum time the application can run with the remaining

battery capacities of the involved devices. Nowadays, for

battery-powered devices, such as smartphones or wearables, it

is crucial to optimize battery usage. A typical solution to pro-

long battery life is to offload complex processing or actuation

tasks to cloudlet or cloud platforms [3]. While in such one-to-

one offloading scenarios optimizing the application lifetime

can be simply mapped to maximizing the energy efficiency

of single devices, this is not sufficient when we are facing a

Fig. 1: Variation of application lifetime for different types of

processing task for a device with a given initial battery level.

This variation is further exacerbated by the available amount

of battery and the type of device (smartphone or smartwatch).

distributed heterogeneous environment, where multiple devices

are present with different properties.

Deciding where to place processing-tasks for maximizing

the lifetime of an application is challenging, especially with

the introduction of both local and remote sensing and actuation

in a distributed environment. One reason is that the offloading

decisions are typically difficult when multiple heterogeneous

devices are involved, as depicted in Figure 1. The measure-

ments are from a synthetic benchmark set. The difficulty is

due to the variation in the application lifetime for different

combinations of parameters such as the complexity of process-

ing, the frequency of sensor data generation, the processing

window size, and the battery charge of the devices involved.

In addition, the fact that data needs to be moved along with

the processing-task incurs communication overhead that also

consumes considerable energy, which further complicates the

problem. The location of sensing- and actuation-tasks plays a

significant role in the offloading decision making. All these

render manual decision making impractical.

In this paper, we introduce Aves, a decision engine built

on top of our (extended) Cowbird framework [4] for energy-

efficient stream analytics across low-power devices and clouds.

Aves performs an automatic processing-task placement, based

on efficiently exploring the large space of offloading policies

and employing a holistic energy model to estimate how long

a given application is able to run under a given policy. The

energy model uses energy consumption measurements from a

collection of synthetic benchmarks that are run once (’offline’)

for the given platform (smartphone, smartwatch). When an

application is launched, Aves automatically decides where to

do the processing, based on the application-specific computa-

tion complexity, the window size, the sensor frequency, and
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Fig. 2: Various stream analytics patterns in applications that

are built across multiple heterogeneous devices with sensing-

task on a smartwatch.

the current battery levels of the phone and watch. Here, Aves

uses estimation among the pre-measured synthetic values, in

combination with an energy model.

Our main contributions are summarized as follows:

• We propose and incorporate an automatic decision-

making engine to the framework, which can place

processing-tasks for applications that are based on stream

analytics in an energy-efficient manner using a holistic

energy model (Section III).

• We validate our energy model and decision-making en-

gine with real-world scenarios, confirming the effective-

ness of the decision engine (Section IV).

II. BACKGROUND AND MOTIVATION

In this section, we describe various sensor-based applica-

tions that can be built using our extended Cowbird frame-

work [4]. Then, we discuss stream analytics patterns and

the possibility of processing-task offloading. Further, various

metrics for offloading decisions are described.

A. Applications

Context-aware applications can be built using various sen-

sors from devices such as smartphones, smartwatches, or other

IoT devices. The data collected from the sensor is processed,

and some action is performed based on the result. There can

be various applications that involve local and remote sensing

and actuation. We provide five concrete scenarios that use

sensors from a smartwatch and perform actuation remotely

on a smartphone, or a cloud or cloudlet. In this paper, we will

use cloudlet to denote either a remote cloud or a local cloudlet.

These scenarios require sensing on the smartwatch and

remote actuation on the phone:

Elderly care app: In this application an elderly person’s

average heart rate needs to be continuously monitored to

identify any abnormal behaviors and the caretaker should

be notified when help is necessary. The heart rate sensing

occurs on the elderly person’s smartwatch and the actuation

(notification) occurs remotely on the care taker’s smartphone.

Coaching app: This application in the context of rowing

gathers sensor data from the rower’s watch and the coach

is notified about the rower’s statistics. In such a scenario,

the movement (accelerometer) sensing occurs on the rower’s

smartwatch and the statistics update occurs remotely on the

coach’s smartphone.

These scenarios require sensing on the smartwatch and

remote actuation on the cloudlet:

Environmental monitoring app: This application can gather

a median of light sensor data along with GPS from multiple

user’s watches to spot dark areas in a city for safety purposes.

Noise detection app: It can gather sound sensor data from

multiple watches in an area and perform Fast Fourier Trans-

form (FFT) to identify noise pollution (such as airplane,

explosion, etc).

Sleep pattern app: It concerns identifying a person’s sleep

pattern and co-relating it with some other data sets such as

disease-related data that require processing over large data sets

in the cloud.

Next, we discuss various stream analytics patterns in these

applications and the possibility of offloading processing-tasks

for some scenarios.

B. Stream Analytics Patterns

Figure 2 illustrates various cases in stream analytics for ap-

plications that are built across the smartwatch, the smartphone,

and the cloudlet, as already covered in the above scenarios.

When sensing is fixed on the smartwatch, we have 9 different

cases. Similarly, we can build other cases with sensing on the

smartphone or on the cloudlet.

For a sensing-processing-actuating scenario LMN , L rep-

resents sensing on the device L, M represents processing on

the device M and N represents actuation on the device N .

This notation will be used throughout the paper. Note that

the devices L, M and N can be a watch, phone or cloudlet.

Therefore, a scenario WPC implies that the sensing occurs

on the watch (W), processing occurs on the phone (P) and

actuation occurs on the cloudlet (C). When the processing-

task could be on either phone, watch or cloudlet, we keep

the notation ’X’. For example, for the scenario WXC, the

processing occurs in a device X which could be either a watch,

phone or cloudlet.

From figure 2, we observe three main patterns that include

sensing and actuation tasks. Case A1 represents the first pat-

tern (WWW) where both sensing and actuation occur locally.

Case B1 (WWP) and C1 (WWC) are when sensing occurs

locally on the smartwatch and actuation occurs remotely on

the smartphone and the cloudlet, respectively. For these cases,

we can offload the processing-task. For example, for A1, when

we offload the processing-task to the smartphone, it becomes

case A2 (WPW). Similarly, case A3 (WCW) is for offloading

the processing-task to the cloudlet. We note that for a given

scenario, there exist multiple options to offload the processing-

task. Hence, it is important to know the most energy-efficient

way to do the processing given a scenario at hand.
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C. Metrics for Offloading Decisions

On offloading the processing-task, we can improve various

metrics such as latency, throughput, and energy. The latency

can be improved by performing simple processing locally

on the device and offloading complex processing to remote

devices that are nearby and have better capabilities in terms of

computing resources. The throughput is another metric for of-

floading the processing-task. In case of stream analytics, when

the processing frequency increases, the number of processing

operations that need to be done also increases and it may

reach the maximum sustainable throughput especially when

data from multiple sensors needs to be processed. Energy

is another important metric especially with battery-powered

devices such as smartwatches and smartphones, it becomes

important to offload processing to save energy. Especially with

remote actuation, there is a possibility to do processing at

the sensing device (WWP), at the actuation device (WPP)

or a different device (WCP). In particular, we focus on a

new metric related to energy efficiency, i.e., maximizing

the application lifetime, by deciding where to place the

processing-task given a scenario at hand. Next, we see how

Aves can be used for this purpose.

III. AVES DECISION ENGINE

As discussed, the main goal for processing-task placement

in Aves is to maximize the application lifetime. To this end,

we built an energy model to enable the decision-making

process, which involves finding the impact of various stream

analytics parameters such as frequency, window size, and

operation complexity on the energy measurement. For a given

scenario, the energy is measured for a possible combination of

parameters, and then curve fitting is applied on the training set.

The trained model is used to predict the energy measurement

for a given set of parameters. Then, the decision on where

to do the processing is made based on the predicted energy

measurement and current battery level for each device. The

decision engine registers the relevant expression accordingly.

A. Extended Cowbird Framework

To implement Aves, we extend our Cowbird [4] framework.

The Cowbird framework already runs on resource-constrained

devices, and provides support for distributed sensing, offloads

computation from phone to cloud, performs stream analytics

on the cloudlet and makes use of an easy to use domain

specific language called Swan-song [5]. However, the Cowbird

middleware does not provide interaction between heteroge-

neous resource-constrained devices (phone and watch), and

there is no support for actuation (both local and remote), which

are vital functionalities to build applications that follow the

sensing-processing-actuating model.

To this end, we implement sensors, actuators, middleware,

and API for the watch on top of the Cowbird framework.

In particular, we introduce distributed actuation by enabling

interaction such as register or unregister expressions and

send or receive sensor data between the phone, the watch,

and the cloudlet. We also extend Swan-song [5] to enable

distributed actuation. Using this addition, we enable the easy

building of context-aware applications that involve local and

remote sensing, processing, and actuation on a combination of

heterogeneous devices such as watches, phones, and cloudlets.

B. Applicability

The application developer registers an expression using our

API on the phone. From the expression, the location and

the type of sensors and actuators are inferred along with the

type of operation and the window size. Aves has already

classified the operations based on their complexity and the

sensors based on their frequency, and it can also identify any

additional configuration (sensor delay) set by the developer.

An expression to measure the average heart rate over 10

seconds from the watch and to perform a vibration actuation

on the phone can be written by the developer as:

watch@heartrate:value{MEAN,10s}
THEN
phone@vibrator: vibrate ? duration =500ms

where watch represents the location of sensing and phone

represents the location of actuation, heartrate : value

implies that it is a heart rate sensor, MEAN represents

aggregation operation and 10s represents the time window,

vibrate : vibrate represents that it is a vibrate actuation and

duration = 500ms represents the duration of vibration which

is 500 milliseconds in this case.

After inferring the expression, Aves checks all possible

options for placing the operation and detects the best possible

scenario for the given expression. The best choice is identified

based on an energy model and a decision engine. Using the

energy model, the electric current for a given scenario with

given parameters is estimated. The decision engine further

uses the estimated electric current for all possible scenarios

to identify the best possible choice with maximum application

lifetime based on the present battery level of the devices that

are involved. In the above scenario, the sensing occurs on the

watch and the actuation occurs on the phone. Assuming that

there is a nearby cloudlet, there is a choice to do the processing

(MEAN, 10s) on the watch, on the phone or the cloudlet.

The decision engine chooses the scenario that can maximize

the application lifetime to do the processing based on the

battery levels of the watch and of the phone and registers the

relevant expression. In this case, we assume that the battery

level of the cloudlet can be ignored as it is connected to the

power supply. The decision on where to do the processing is

complex as it changes based on multiple factors such as battery

level, sensing frequency, operational complexity, window size

and the location of sensing and actuation. Hence, Aves in

combination with Cowbird, helps the developers to ease the

application development process.

C. Evaluation Setup

We chose electric current instead of power to model energy

for two reasons. First, the change in the voltage for both

smartphones and smartwatches are minimal. Therefore, power
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Fig. 3: Event processing scenario.

(voltage×current) has an impact only on the electric current.

Second, to measure the battery life for performing decision

making, electric current is used instead of power (as shown in

equation 4).

The electric current can be measured based on a hardware-

based power monitoring tool such as Monsoon [6] or software-

based such as Trepn profiler [7]. Trepn is more widely avail-

able, but the measurement from Monsoon is more accurate.

For our experiments, we use Monsoon. It was attached to the

watch and the phone to measure the electric current usage. We

measure the average electric current over 5 seconds (30,000

data points) for various scenarios. The voltage was set to 4

V for all the experiments. As a watch, we use the Moto 360

2nd gen with a battery capacity of 375 mAh, and for phone,

we use Nexus 5x with battery capacity 2700 mAh as shown

in Table I. Both the watch and the phone communicate with

each other using Bluetooth and with the cloudlet using WiFi

communication.

D. Parameters

Figure 3 shows an event processing scenario that operates

on a window size of 3 seconds and the sensor data collection

rate of 2 Hz. On every new event, the operation is performed

over the window size of 3 seconds. Since the frequency is

2 Hz, the window size will contain six samples. For the

MEAN operation with complexity O(N) the average over six

samples is calculated. Also, other operations with different

complexities can be used depending on the scenario. Hence,

the number of operations (φ) depends on the frequency (f ),

the window size (w) and the complexity of the processing (O)

and it can be shown as:

φ = O(g(n)) (1)

where n = f · w and g(n) is a function that represents the

type of processing such as MEAN, MEDIAN that can have

different time complexities.

E. Synthetic Workload

In general, it is not doable to do measurements and mod-

eling for each new application. Our solution is to measure

(once, offline) a broad spectrum of synthetic cases to build

the energy model. Applications with a given set of parameters

(complexity, frequency, window size) are estimated based on

the model and the best option (e.g., WWP) that can maximize

the application lifetime is chosen. In our previous work, we

have already used an online profiler-based approach [8] to

improve the energy-efficiency. However, software profiling

will take some time in the beginning to measure the electric

current. With the offline model-based approach we can make

fast decisions in the beginning and in combination with our

earlier work we can also validate or change the decisions in

the run-time.

Figure 4 shows the battery life of two scenarios (WXP and

WXC) for various possible combinations of parameters. WXP

indicates sensing on the watch and actuation on the phone

and WXC indicates sensing on the watch and actuation on

the cloudlet. The battery life in the figure represents the total

time the application can run in hours when both the phone and

the watch are at the battery level of 100%. On the x-axis, the

label 10−10−N indicates a combination of sensor frequency,

window size, and operational complexity, respectively. From

the figure, in case of WXP and for 10 − 10 − N , there are

three possibilities to perform processing: WWP (locally on the

watch), WPP (remotely on the phone) and WCP (remotely

on the cloudlet). WCP is the least preferred choice for that

combination of parameters. We also note that for a different

combination of parameters the best choice also changes.

The figures show five applications that were discussed in

Section II-A: coaching, elderly care, sleep pattern, noise de-

tection, and environmental monitoring. Such applications use

different combinations of sensors, actuators, and parameters.

F. Energy Model

The energy model is built based on the two basic blocks: the

computation on the device and the communication between

the devices. The computation is represented in terms of the

number of operations (φ) associated with a given analytics

scenario and the communication is represented in terms of

frequency of remote actuation (f ). Here, we show the impact

of computation and communication on the electric current for

both the watch and the phone.

Figure 5 shows the average electric current on varying

frequency and window size for both the watch and the phone.

The figure is used to identify the relationship of various pa-

rameters (independent variables) to electric current (dependent

variable). The average electric current is measured separately

for each device that is involved in a scenario. To show the

impact of frequency, out of all possible scenarios, we show

the interesting scenarios such as local sensing, processing and

actuation (WWW for watch, PPP for phone), local sensing

and processing with remote actuation (WWP and WWC for

watch, PPW and PPC for phone), remote sensing with local

processing and actuation (PWW for watch, WPP for phone)

and remote sensing and processing with local actuation (PCW

for watch, WCP for phone). For measuring one parameter

(e.g., frequency), we keep other parameters (window size and

complexity) constant. To show the impact of window size we

chose the scenario that involves only computation, i.e., local

sensing, processing and actuation (WWW for watch, PPP for

phone). We note that for various scenarios, the average electric

current is different. The variation implies that offloading the

processing-task will have an impact on the average electric
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TABLE I: Device configuration.

Resource type Device Operating system CPU Memory Network Communication Battery Capacity (mAh)

Watch Moto 360 2nd gen Wear OS 2.0
1.2 GHz quad-core CPU

512 MB
Bluetooth 4.0

375
(only one core enabled) WiFi 802.11 b/g

Phone LG Nexus 5X Android 8.1.0
Hexa-core (4x1.4 GHz Cortex-A53

2 GB
Bluetooth 4.2

2700
& 2x1.8 GHz Cortex-A57) WiFi 802.11 a/b/g/n/ac

Cloudlet MacBook Pro macOS Sierra 10.12.6 8 core (2.8 GHz Intel Core i7) 16 GB WiFi 802.11a/b/g/n
N/A

(connected to power supply)
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Fig. 4: Battery life comparison of three choices for two cases (WXP and WXC) using various synthetic workloads.
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Fig. 5: The impact of frequency and window size on the electric current measurement for multiple scenarios on both watch

and phone. The symbol f, ws and c represents frequency, window size and complexity respectively.

current. For a given scenario, we see a linear increase in the

electric current used when both the frequency and the window

size increase.

Based on the observations, we see a linear correction be-

tween various parameters and the electric current. In contrast,

a non-linear model would have made it very difficult to

interpret and use. Since we have a linear correlation, we can

use a simple model using multiple linear regression analysis

to model the electric current. For choosing the variables,

we note that the electric current is mainly impacted by the

sensing frequency, the processing frequency, the amount of

processing and the actuation frequency. For expressions where

the frequency for sensing, processing, and actuation are the

same, we chose the frequency (f ) as one variable. The other

variable is the number of operations (φ) which indicates the

amount of processing, and it is chosen based on the frequency,

window size, and the complexity as seen in equation (1).

It is important to note that various hardware sensors and

actuators will have varying energy usage. However, across

multiple offloading possibilities, energy consumption will re-

main the same. For example, for a scenario WXP that uses

accelerometer sensor on the watch and vibrate actuator on

the phone, the operation offloading possibilities (WWP, WPP,

and WCP) will consume the same amount of energy for

accelerometer sensor and vibrate actuator. Hence, the energy

consumed by the sensor will not have an impact on the energy

model. Therefore, we measure the electric current using a test

sensor and actuator for the synthetic cases. For making the

model simple, we assume that the network transmission error

is minimal. The model for measuring the electric current (δ)

can be written as:

δ = β0 + β1f + β2φ (2)

For expressions where the frequency of sensing (f1) and

actuation (f2) are different, the model will then be written as:

δ = β0 + β1f1 + β2f2 + β3φ (3)

From the model, the regression coefficients (βn) are es-

timated based on several samples for each scenario. The
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Fig. 6: Decision making based on remaining battery life.

estimation is done using curve fitting based on the least square

method. It aims to minimize the difference between observed

and predicted values.

G. Decision Making

While our decision engine decides where we should perform

computation, we also have to take into account the remaining

battery charge, as it can influence the decision where to process

the sensor data. Figure 6 shows the influence of the remaining

battery charge on the discharge rate of both watch and phone.

Here, we fix the battery level of the watch and vary the

initial battery charge of the phone. In addition, the figure

shows two scenarios, where sensing and actuation are fixed.

The first scenario shows two lines, i.e., sensing on the watch

in combination with processing and actuation on the phone

(WPP). The second scenario shows the lines for both sensing

and processing on the watch and only actuation on the phone

(WWP). For the watch, the average electric current on running

the program while processing the data locally is 79.45 mA,

not processing but offloading to the phone the electric current

of the watch is 63.98 mA. In case of the phone, the electric

current for processing on the watch is 130.69 mA (for using

Bluetooth communication), and for processing locally on the

phone, it is 158.61 mA. The overall goal of the decision engine

is to run the application longest using these two devices.

Figure 6(a) shows the discharge rate of WPP and WWP

for the phone exceeds the watch. The maximum lifetime

is determined by the highest discharge rate of the devices

involved for a given scenario, which in the case of WPP

is WPP for the watch at 5.9 hours, and not WPP for the

phone. Figure 6(b) shows the discharge rate of WPP for the

phone exceeds WPP for the watch. However, we still achieve

slightly longer lifetime using processing-task on the phone

(WPP). On the other hand, Figure 6(c) shows that keeping

the processing-task locally in the watch (WWP) will yield

the longest application lifetime. Trivially, and not shown in

Figure 6, if the lifetime of both WWP and WPP for the phone

is lower than WWP and WPP for the watch, the application

lifetime will be at most the lowest discharge rate of the phone,

i.e., offloading processing-task to the watch (WWP). Hence,

to span the lifetime of a distributed application, we have to

take the remaining battery charge into account.

Now, we can generalize the decision-making process to

more than two devices (namely phone and watch). A single

scenario Li is computed as follows:
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Fig. 7: R-squared value for various scenarios.
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Li = min

(
PB1

· CB1

δB1i

,
PB2

· CB2

δB2i

, ...,
PBm

· CBm

δBmi

)
, (4)

where B1...m ∈ {Phone,Watch, ...} (battery-powered de-

vices), CBm
is the battery capacity for the device Bm, PBm

represents the present battery percentage for the device Bm,

and δBmi
(gathered from the equations 2 or 3) is the electric

current for a scenario i for the device Bm. Equation 4 gives

the result of the device with the shortest battery life for a given

scenario. By applying the following equation:

α = max(L1, L2, ..., Ln). (5)

We will find the scenario α with the longest application

lifetime out of the possible n scenarios. Note that the devices

in the equation 4 are battery-powered. It is possible that

for some devices, battery consumption is not an issue. For

example, a laptop that is connected to the power supply may

not necessarily be concerned about battery life. In such cases,

we ignore the measurement of battery life for those devices

in equation 4.

IV. EVALUATION

In this section, we give a brief summary of the various

evaluations performed. We describe how the validation of the

energy model is performed. Then, we show the impact of the

battery percentage on the offloading decision and compare it

with various offloading strategies. Finally, we compare the

decision made by Aves with a hardware power monitor for

two real-world applications.

A. Summary

We describe various evaluations performed using the de-

cision engine and address the following questions: 1) What

kind of model do we need? Is a linear model a good fit? 2)

How accurately can the model predict the electric current mea-

surements? 3) What is the impact of battery life and battery

percentage of various devices on the offloading decision? 4)
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(a) WXC (5-10-N2). (b) Improvement for WXC.

Fig. 9: Impact of battery percentage on the offloading decision.

How much is the maximum improvement of the application

lifetime for a given scenario? Does offloading to the cloudlet

save energy for any scenario? 5) How accurately can Aves

estimate the best option for real-world applications?

B. Validation of the Model

We use 23 samples per scenario out of which 80% of

the samples are used for training the model and 20% for

prediction. We measure two aspects: coefficient of determi-

nation (R2) [9] and the coefficient of variation of the root

mean square error (CV (RMSE)). The R2 value indicates

the goodness of fit and is measured between 0 and 1. Figure 7

shows the R2 value for various scenarios. We note that the

R2 value for 23 out of 24 scenarios is greater than 0.90 out

of which the value for 18 scenarios is greater than 0.95. Only

1 scenario (WWP) has R2 value of 0.80. The result implies

that the linear regression model is a good fit.

Next, we measure the variability of errors between the

observed values and the predicted values for each scenario

using CV (RMSE). It is measured in percentage, and a lower

value indicates a higher accuracy for the model. Figure 8

shows the CV (RMSE) for various scenarios. In the figure,

we note that the CV (RMSE) percentage is less than 10%

for 20 scenarios out of which the value is less than 5% for

10 scenarios. For only 4 scenarios, the value is between 10%

and 15% with the highest value for WWP (13.6%). The result

indicates that the model is highly accurate.

C. Offloading Decision

Figure 9 shows the impact of battery percentage on the

offloading decision. We choose the scenario: WXC. WXC does

sensing on the watch and actuation on the cloudlet. Figure 9a

shows the heat map of the chosen device to offload processing

for a given battery percentage of the phone and the watch. The

letter ’P’,’C’ indicates that the processing on the phone, and

the cloudlet respectively is the best decision. The intensity

represents the application lifetime in hours. The parameter

5− 10−N2 indicates a frequency of 5 Hz, a window size of

10 seconds and a complexity of O(N2).
For scenario WXC, when the battery percentage of watch

and phone is more than 75% and less than 50% respectively, it

is better to do processing on the cloudlet. On the other hand,

when the battery percentage for the watch is below 50% and
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Fig. 10: Normalized battery life comparison of Monsoon

hardware power monitor with the decision-engine’s estimation

for two real-world applications. The battery percentage for

both phone and watch are at 100%.

the phone is above 50%, it is better to do processing on the

phone. Hence, it is better to offload the processing-task to the

phone or the cloudlet than processing locally on the watch.

Note that this result is specific to a given scenario with given

window size, frequency, and complexity.

Figure 9b shows the improvement (in number of times) for

three different parameters. We compare the decision engine’s

choice of task placement with the random, the cloudlet-based,

the worst, and the median-based choices. In the plot, the x-

axis represents parameters with different frequency, window

size, and complexity, the y-axis represents the improvement

for different combinations (from 5% to 100%) of battery

percentage of both the phone and the watch, the width shows

the probability density of the data at different values and

the horizontal stripes show the minimum, the mean and the

maximum value. We observe a maximum improvement of

14.25 times. With the parameter 2.5− 1−NlogN , we notice

an average improvement of 1.33, 1.31, 1.91 and 1.11 times.

Hence, Aves always gives good decisions, whereas random or

manual choices may suffer from much more variation.

D. Real Application Comparisons

As described in Section III-B, Aves makes automatic place-

ment decisions for applications without doing new measure-

ments (instead, it uses estimation based on pre-measured

synthetic benchmarks). Here, we evaluate how well this au-

tomatic decision-making works. We study two applications,

and compare the decisions made by Aves (through estimation)

against the best decision (determined by measuring). The first

application is an elderly care app that is used to measure

the average heart rate over 10 seconds of an elderly person

and displays it on the phone of the caretaker. This application

follows a WXP scenario with parameters 1−10−N . Since the

benchmark set only contained measurements for the closest set

of parameter 1.25−10−N , the measurements for 1−10−N

had to be estimated using equation 2.

The second application does simple environmental monitor-

ing using O(N) analysis. The app measures the average light

sensor data over 30 seconds from multiple smartwatches and

sends it to the cloudlet for further analysis. This application

follows a WXC scenario with parameter 3− 30−N . In this

case, the benchmark set only contained measurements for the

closest set of parameter 2.5−10−N . Hence, the measurement

had to be estimated using equation 1 and 2 for each scenario.

447

Authorized licensed use limited to: ULB Darmstadt. Downloaded on September 15,2020 at 20:35:31 UTC from IEEE Xplore.  Restrictions apply. 



To evaluate our automatic decision engine, we have also

actually measured the electric current for all combinations of

the applications, using the Monsoon hardware power monitor.

It is then compared against the estimated electric current for

each scenario. Figure 10 shows the results of the comparison.

The battery life measurement is normalized against the local

processing (WWP and WWC) to remove the additional current

usage caused by sensors and actuators. Removing the overhead

will not have an impact on the decision-making process, as

described in Section III-F.

In all cases, the decision engine and the measurement based

on the Monsoon power monitor chose the same, i.e., WPP for

WXP, and WPC for WXC. In the two cases, the maximum

application lifetime is attained by using the remote device

(phone). Hence, Aves helps the developers to build energy-

efficient sensor-based applications.

V. RELATED WORK

Computation offloading has been intensively studied [10].

Its goal is typically reducing the execution time of smartphone-

based applications or improving the energy efficiency of

mobile devices. In most cases, computation from a phone

is offloaded to a local server or a remote cloud over the

Internet. While the benefit of faster processing can be gen-

erally expected, the impact on the energy efficiency of the

smartphone seems less trivial because transferring the data

needed for computation can also be very energy-consuming

due to intensive communication.

A large body of work is focused on exploring energy-

efficient computation offloading, and an overview can be found

in [11]. Many projects [12], [13] assume a simple linear energy

consumption model, based on which they explore the min-

energy computation offloading scheme. Guo et al. also follow

the linear energy consumption model and consider a more

complex scenario where constraints on task dependencies and

completion time deadlines are enforced [14]. Lyu provides

a distributed integration architecture of the cloud, edge, and

IoT devices, and propose a lightweight framework for energy-

efficient selective computation offloading [15]. Offloading

decision making for optimized energy efficiency has also

been explored for specific applications such as real-time video

analytics [16] and augmented reality [17]. Pablo et al. [18]

provide a context-aware framework that take into account

the energy efficiency in order to choose the best way to run

specific tasks in a smartphone.

In contrast, our proposal provides a general way to measure

the energy consumption of low power devices and to quickly

build a realistic energy consumption model using the measure-

ment results. We are among the first to consider the energy

consumption of the whole sensing-processing-actuating cycle

of sensor-based applications instead of looking at only the pro-

cessing part when making computation offloading decisions.

VI. CONCLUSION

We designed Aves, a decision-making engine based on an

energy model that automatically places the processing-task

in an energy-efficient manner, given a scenario at hand. The

energy-model is built based on a set of synthetic workloads

that are measured offline once.

We validate the model and show that our linear regression

based model is a good fit and is accurate for most scenarios.

We observe that the battery percentage of a device has an

impact on offloading decisions. Aves significantly improves

the application lifetime compared with different placement

strategies. We show that the best choice estimated by Aves is

the same as the one measured using a hardware power monitor

for two real-world applications.
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