
 

 

Advanced Computer Networks (2020) 
Lab3: Building A Data Center Network 

Type: Group 
Maximum points: 15 
Submission: report and code on Canvas 
Deadline: Wednesday December 2, 2020 
Contact: vu.acn.ta@gmail.com 
 
The goals of this lab are 

- Write code to build a fat-tree network in Mininet 
- Implement the shortest-path routing on the fat-tree network 
- Implement the two-level routing on the fat-tree network 
- Design an experiment to compare the performance of the network under the two routing 

schemes and write a report about it 
 
Note: Please include your group number and all group member names at the beginning of your report 
to facilitate our grading. Also, please rename the folder to be submitted with name “lab3-groupx” 
where “x” is your group number and then compress the folder into a “.zip” file. Please do the folder 
renaming before the compression so that the folder name is correct when we decompress the folder. 
Please submit the zipped folder on Canvas to the assignment “Lab3”. 

1. Build a fat-tree data center network in Mininet 

In the previous labs, we have learnt how to build a simple network in Mininet and also how to 
generate a fat-tree topology. The first task of this lab is to build a fat-tree network in Mininet, i.e., 
building your own data center on your machine! Of course, due to resource limitations, we cannot run 
a large-scale network on a single machine, so we will limit our attention to a small-scale one, with 16 
servers (#port = 4 in fat-tree). 
 
Since we have the code for generating a fat-tree topology already, we can employ the generated 
topology directly. You may need to slightly modify your code for topology generation. In any case, 
please first make a copy of your fat-tree topology generation code (i.e., topo.py by default) from 

1 

mailto:vu.acn.ta@gmail.com


X_405082: Advanced Computer Networks (2020) Lin Wang (lin.wang@vu.nl) 

directory lab2 to directory lab3. This is to make sure your lab3 submission is self-contained and is 
not dependent on code in other directories. 
 
You are provided with a code template in the file lab3/fat-tree.py. Please complete this template, 
more specifically the constructor method of the FatTreeNet class,  to create a fat-tree network 
instance in Mininet. Note that you should assign correct IP addresses to the servers according to the 
original fat-tree design described in the fat-tree paper. For the link properties, you can use bandwidth 
15Mbps and latency 5ms for all links. Once you have done your implementation, you can test it by 
running: 
 
$ bash ./run.sh 
 
A controller has also been specified as RemoteController running at 127.0.0.1:6653 in the code. 
When you run the above command, the network together with the controller should be brought up. 
However, you will not be able to reach another server from a server in the network since all the 
switches have not set up the correct forwarding tables and by default all packets that arrive at a 
switch are forwarded to the controller. Since you have not told the controller to do anything, all 
packets will be dropped. 

2. Implement shortest-path routing on the fat-tree network 

To enable reachability in the fat-tree network you have just built, you need to implement a routing 
scheme on the network through the controller. In this task, you are supposed to implement the 
shortest-path routing scheme on the fat-tree network. In the previous lab, you have already 
implemented algorithms (e.g., Dijkstra's algorithm) to perform shortest path calculation. You can 
simply reuse the code you already have. 
 
Your job is to write a Ryu controller application just like the learning switch you implemented in lab1, 
which tells the switches to do shortest-path routing between any pair of servers. You are provided 
with a code template at lab3/sp_routing.py. Please work on this code, but feel free to change 
anything in the code if needed. 
 
Note that you are not supposed to assume switches are interconnected with each other using static 
port mappings. In other words, you are under the situation that the switch ports used for connecting 
any two switches are unknown. You need to obtain such information with topology discovery APIs 
from Ryu at runtime. You can use API functions like get_switch() and get_link() to obtain the 
switches in the network and the network links including port mappings. You can find more details 
about how to use these functions at: 
https://github.com/Ehsan70/RyuApps/blob/master/TopoDiscoveryInRyu.md. 
 

2 

https://github.com/Ehsan70/RyuApps/blob/master/TopoDiscoveryInRyu.md


X_405082: Advanced Computer Networks (2020) Lin Wang (lin.wang@vu.nl) 

The above functions provide the port mappings between switches, but they do not give the switch 
ports that are used to connect the servers. You need to find your own way to obtain such information. 
A hint is to use ARP packets to do the job. Recall that when the controller receives a packet, it records 
the in_port, which can help you obtain the mapping between the IP address of the server and the 
switch port that the server is connected to. However, before you obtain the correct mapping, you 
probably need to do flooding for ARP resolution. You can not do the flooding on the network simply 
because you have not set up forwarding entries on switches for routing. Think about how to handle 
ARP resolution without routing information. 
 
Once you manage to calculate a forwarding entry for a switch, you should push a flow entry by 
invoking the add_flow function which is available in the code template already. If you have done 
lab1 properly, you should know how to use this function. Here, we simply adopt forwarding based on 
the destination IP address following the shortest path. Note that for a flow entry that matches on the 
IP address, e.g., dst_ip->port, you may need to match on the EtherType of the Ethernet header as 
well. Please find out which EtherType code you should match for IP packets. 
 
Once you have finished implementing your controller application, you can run the following 
command to bring up the controller: 
 
$ ryu-manager ./sp_routing.py --observe-links 
 
Note that the option --observe-links is needed for topology discovery APIs.  
 
You may also want to use the following command to check the flow entries on switches for debugging 
purpose: 
 
$ sudo ovs-ofctl dump-flows s1 
 
where s1 is the ID of the switch that you want to check. 
 
To finally test the correctness of your control program, you can run the pingall command in Mininet. 
You should see that all the servers in the fat-tree network are able to reach each other and there are 
0% packet drops. See a screenshot below: 
 

3 



X_405082: Advanced Computer Networks (2020) Lin Wang (lin.wang@vu.nl) 

 

3. Implement two-level routing in the fat-tree network 

Now, let us implement a different routing scheme instead of shortest-path routing. 
 
The two-level routing scheme is the default routing scheme described in the fat-tree paper (see 
Section 3.5 in the fat-tree paper, please read it carefully). The high-level idea is to use (1) prefix 
matching for intra-pod traffic and (2) suffix matching for inter-pod traffic. You need to set up the flow 
entries correctly on all the switches according to the description in the paper.  A template is given at 
lab3/ft_routing.py. 
 
Note that you can use the priority of a flow entry and if multiple matching flow entries are present, 
only the one with the highest priority will be matched. For example, you can set up a higher priority for 
prefix matching entries to prevent intra-pod traffic from being routed outside the pod. 
 
Once you have finished implementing your controller application, you can run the following 
commands to bring up the controller: 
 
$ ryu-manager ./ft_routing.py --observe-links 
 
Again, you can run the pingall command in Mininet to test the correctness of your control program. 
You should see that all the servers in the fat-tree network are able to reach each other and there are 
0% packet drops, i.e., the result should be the same as shown in the above screenshot. 

4. Compare the performance of the two routing schemes 

Once you have done the implementation of the two routing schemes, please design an experiment to 
compare the performance of the network when applying the two different routing schemes. In Lab0 

4 



X_405082: Advanced Computer Networks (2020) Lin Wang (lin.wang@vu.nl) 

we have already learned how to test the throughput and latency of a network in Mininet (by using 
commands like ping and iperf). You may want to follow the same techniques. Here, the challenge is 
on choosing the server pairs for testing. Please reason about your choice and document your findings 
after your experiments by writing a small report. 

5. Assessment criteria 

This lab will be assessed based on the following criteria: 
- Correctly generating the fat-tree network in Mininet: 4 points. Your code should be able to 

generate the fat-tree network in the correct way: the number of servers, number of switches, 
and the links between all servers and switches should be correct. Note that you should not 
hard-code any numbers in your code, i.e., your code should be able to generate fat-tree 
networks in different sizes when supplied with different inputs, although for testing purpose 
we use #port = 4. 

- Correctly implementing shortest-path routing: 4 points. Your code should be able to set up 
shortest-path routing on the fat-tree network. Make sure pingall is successful and all the 
flow entries are correctly set up on the switches. 

- Correctly implementing two-level routing: 4 points. Your code should be able to set up 
two-level routing on the fat-tree network. Make sure pingall is successful and all the flow 
entries are correctly set up on the switches. 

- Experiment and report quality: 3 points. In the report, you should at least explain your 
experiment plan, the system setup, and the results you obtain (in the form of table or figure). 
Also, please analyze the results and try to make reasonable conclusions from the results. 

 

5 


