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Abstract—While social Virtual Reality (VR) applications such
as Facebook Spaces are becoming popular, they are not compat-
ible with classic mobile- or cloud-based solutions due to their )
processing of tremendous data and exchange of delay-sensitive Edge"’

’ @

metadata. Edge computing may ful Il these demands better, but
it is still an open problem to deploy social VR applications in an
edge infrastructure while supporting economic operations of the
edge clouds and satisfactory quality-of-service for the users.
This paper presents the rst formal study of this problem. We

model and formulate a combinatorial optimization problem that CE (User)
captures all intertwined goals. We propose ITEM, an iterative
algorithm with fast and big “moves” where in each iteration, we ——— CE-SE association—> User interaction

nstr raph n Il th n nvert th - o . )
construct a graph to encode all the costs and convert the cost op Fig. 1. An example scenario to illustrate the service entity placement problem

tlmlzatlor_1 Into_ a_graph cut pmb'e”.‘- By obtaining t_he MINIMUm = ¢ social VR applications in the edge environment. (AP: Access Point, CE:
s-t cut via existing max- ow algorithms, we can simultaneously  cjient Entity, SE: Service Entity)

determine the placement of multiple service entities, and thus, the

original problem can be addressed by solving a series of graph to form a shared edge resource pool. With the help of light-
cuts. Our evaluations with large-scale, real-world data traces ’

demonstrate that ITEM converges fast and outperforms baseline Weight virtualization techniques, resources will be allocated at
approaches by more than2 in one-shot placement and around @ ne granularity (e.g., per user) subject to quality-of-service
1:3 in dynamic, online scenarios where users move arbitrarily (QoS) requirements and system-wide optimization goals.
in the system. In this paper, we focus on VR applications with online social
network support (referred to as social VR applications) and
we study the problem of placing service entities for social
Virtual Reality (VR) and Augmented Reality (AR) are comVR applications in the edge environment. As illustrated in
monly believed to be the killer applications for the emergingigure 1, a social VR application consists of two parts: service
edge computing paradigm [1], where resources are availabfiity (SE) and client entity (CE, on user device). The SE,
for service provisioning in much closer proximity to end userde ned as the bundle of the user's personal data and the
with low-delay and low-jitter network connections. VR tsprocessing logics on the data, takes care of the user state and
well in this paradigm due to its resource-hungry and delagomputation-intensive tasks such as scene rendering, object
sensitive nature. As an inevitable technology trend, VR h#gcognition and tracking, and the interaction between users,
gained popularity. Recently at WWDC 2017, Apple releasesthile the CE is only in charge of displaying the video frames
a new tool ARKit for developing VR applications on itsrendered by the SE and monitoring user behaviors. The service
platforms. In the meanwhile, Facebook is augmenting ientity placement problem is to decide where to place the
social network with Virtual/Augmented Reality and recentlySE of each user among the edge clouds in order to achieve
it released its new social network platform named Spaces. economic operations of the edge clouds as well as satisfactory
In fact, edge computing has already been adopted f@oS for the users. We call this probleedge service entity
VR in industry for handling the situation posed by resourgelacement (ESEPWhile motivated by social VR applications,
limitation of local processing and large, unpredictable latenéfe ESEP problem is fundamental for any applications that
of remote cloud-based processing. For example, Apple ugeguire interactions both between each user and its service
iMac to support VR rendering and Facebook Oculus emploggd between (the services of) different users.
a Windows PC for computing. According to the Open Edge The ESEP problem is non-trivial mainly due to the follow-
Computing initiative [2], an edge cloud will be able to offeling intertwined challenges: (1) Edge clouds are heterogeneous
compute and storage resources to any user in close proximityterms of activation and running costs and thus, achieving
through an open and globally standardized mechanism, whitle best economic outcome woufglish the SEs to edge
allows a set of edge clouds in the same geographical regidouds with lower costs(2) SEs need to exchange metadata

I. INTRODUCTION



frequently with the associated CEs and other SEs, as users
are updating their scenes and interacting with each other in

TABLE |
LIST OF MAIN NOTATIONS

social VR applications, e.g., accessing the state of other users”
or collaboratively completing a task, and thysacing SEs Up
closer to each other would result in better QoS perceived pu
by the users(3) Due to the fact that edge clouds are not Pu
intentionally designed to simultaneously accommodate a large ppq
number of SEs, especially for VR applications where specic fy
hardware such as GPU may be involved, resource contentiorf uv
needs to be controlled, which suggests thath edge cloud nﬁ’:‘)
should not be too crowded with SEEhe second challenge is  ap
unique to ESEP and all these intrinsically intertwined goals's(Pu)
together complicate the problem. L
Priori research efforts fall short of fully addressing the x

set of edge clouds

set of users

set of users with SEs placed on edge clqud

edge cloud where the SE of users placed

edge cloud attached to the AP that useis connected to
set of SE placement for all the users, ifgps;::;;pmg
set of SE placement after expansion move on edge apud
comm. frequency between the CE and the SE of user
frequency of access from usarto userv

network delay between edge clopdand g

number of SEs on edge cloyd

activation cost of edge clougl

cost of placing the SE for user on edge clougy
parameters in colocation cost of edge clqud

set of all interacting user pairs

binary decisions in an expansion move, ifexg;::;;Xmgd

above challenges all together. On the one hand, most studies
on edge computing are focused on computation of oadin
techniques and hardware/software architectures [3], [4]; ed]
resource management proposals generally lack the sped

orld data traces to validate the performance of ITEM. For
of ine case, we employ a Twitter dataset with realistic user
N'teractions and derive edge cloud locations from Starbucks

consideration of the interactions between users as in the casi6Rlions. We select two major cities in the US, namely Los

social VR applications [5]-[11]. On the other hand, solutio
for data placement across servers or distributed clouds

rangeles (LA) and New York City (NYC), to conduct our
%@Iuations. For the LA scenario, we collect the locations

social networks address the optimization of network traf ¢ off 105 Starbucks shops and generate a subset of the Twitter

data storage etc. but neglect the impact of multiple importa?in?
factors in the edge context such as activation cost and resolf@E
contention [12]-[16], which fundamentally change the se

taset with 7553 users by pruning the Twitter dataset ac-
ing to user location. For the NYC scenario, the number
pf considered Starbucks shops is 117 and the pruned dataset

tings and require different solution approaches. While gene%ntains 6068 users. The user interactions between users are

service placement problem has been extensively explore

dSinthesized following realistic distributions disclosed in [19].

various settings [17], [18], no existing algorithms are knowﬁor the online case, we use a Rome taxi dataset with around

to solve the ESEP problem.

300 taxi trajectories and we synthesize social interactions

Summary of contributions. We present the rst formal between the taxis. We select 15 major metro stations in Rome

study of ESEP and make the following contributions:

as edge cloud locations. Using these real-world datasets, we

We model the identi ed challenges with four types of costPmpare ITEM with baseline placement solutions and the key

including the activation cost, the placement cost, the proximi

tg)dings. are: ITEM can well balance the four types of cost and

cost, and the colocation cost. The considered cost models @yéPerforms the baselines up & and1:3  in of ine and
comprehensive yet practical, and are general enough to capﬁ)ﬂgne cases, respectively, while exhibiting fast convergence.

a wide range of concrete performance measures in reality.
Based on these models, we formulate the ESEP problem as a
combinatorial optimization, which we show is NP-hard.

Il. PROBLEM FORMULATION

We provide model for the system and introduce four types of

We propose the ITerative Expansion Moves (ITEM) alcost, based on which we formulate the ESEP problem. Table |
gorithm to solve the formulated combinatorial optimizatiofists the main notations we will use throughout the paper.

problem based on iteratively solving a series of minimum
s-t cut instances. In each iteration, ITEM selects an ed

@9 The System

cloud and performs an “expansion move”, which is a local We consider a metropolitan-area edge computing system
optimization of the current SE placement by determininghich consists of a set afi edge clouds, denoted Wy =

edge cloud. We show that an expansion move is actually restaurants. Each edge cloud is accompanied by an access
equivalent to solving a minimurstt cut problem on a carefully point (AP) that allows the user to connect to the platform.
constructed graph and we present the technique to build e assume that resources in the edge clouds are virtualized
graph with all of our costs encoded. ITEM has multipleising container-based lightweight virtualization technologies
advantages: (1) The graph construction is deterministic aadd can thus be allocated and shared exibly. All the edge
easy to implement; (2) Placement decisions are made with lsiguds are connected to a metropolitan area network (MAN)
“moves”, i.e., not only one but many SEs can be determinéubide a city and the delay between each pair of edge clouds
simultaneously in each iteration; (3) The decision-making Bandq is given by functiond(p; ¢) for p;q2 P.
based on existing polynomial-time max- ow algorithms; (4) We consider the problem of provisioning a social VR
It converges fast, thanks to the “big move” in each iterationapplication on the given set of edge clouds to serveisers

We carry out extensive experiments with large-scale realistributed in the MAN. An exemplary scenario is illustrated



d(u, pu) dlpu. ) Proximity cost. Proximity is a key performance metric in
edge computing. The proximity measure of a user contains two

9) d(p,,
H -2 g @ parts: how timely a user (or her CE) interacts with her SE and
_Associa Access how timely a user interacts with other users, as depicted in
Useru AP(P}) Pu P Figure 2. In order to give priority to frequent communication
zingd r21ér Fs’gxai‘f:étﬁh?fgtie?gg?o?(}2; ;%zt’\‘,“vlégigﬁgisoer:sde'ay between the usgf interaction, we incorporate the communication frequency
' fu 0 between the CE and the SE of userand the

in Figure 1. The set of users is given by= fui;:::;ung. access frequency, 0 from useru to userv. As a
Each useu has access to the edge cloud system via its neart&3it, the combined proximity cost for the former is given
AP, denoted byp,, in her vicinity? For each useu 2 U, an By oy fud(u;py), while for the latter it is given by
SE is brought up on one of the edge cloygis to handle ()21 fuv d(pu;pv). We notice that the delay between a
the computation within the application related to usgpe.g., user and its AP is actually irrelevant to the placement decision.
rendering scenes, recognizing and tracking objects forujser For simplicity, we will omit it and will use the following form
The SE encapsulates all the necessary runtime environmégiitthe total proximity cost in the rest of the paper.

as well as the service state for the user. The frequency of _P . P .
communication between a userand her SEp, for updating Eo = waufud(Puip) + vz fuw d(pusv): (3)
scenes and monitoring user behaviors is denoted joyin Colocation cost. The colocation cost is incurred by the
addition to employing the SE to process data, each user alggource contention among the SEs that are placed on the
interacts with other users within the application, e.g., accessisgme edge cloud. This is considered unavoidable as edge
the prole or updates of other users or even completing douds are not intentionally designed for large-scale resource
task collaboratively with other users. The frequency of accesfultiplexing and performance isolation is typically dif cult
from useru to userv is given byf,, (fuy , Oif u= V). with light-weight virtualization. The performance degradation
We denote byL the set of all interacting user pairs whergjue to SE colocation can be characterized ng + pmp,

L =f(UV) juvaurusvd where , and , are parameters. The reasoning behind this
model is as follows. In the worse case, all thg, SEs
B. Cost Models colocated on the same edge cloud rely on a single CPU core

We jointly consider multiple performance measures of tHer processing and thus, the stretch on execution time, known
system by modeling four types of costs as detailed below. as performance degradation ratio here, can be as largg as
Activation cost. For each of the edge clouds, if there is afollowing the simple round-robin scheduling policy. Therefore,
least one SE being placed on it, then a static activation cdistS reasonable to use a general functiogmp + | to
has to be paid. Such activation cost is incurred by the coolijaracterize the cost for the performance degradation of one of
or other maintenance efforts in the edge cloud irrespective e colocated SEs given that performance degradation can also
SEs. Assume that the set of SEs that are placed on edge cl@dnduced by contention of resources other than CPU (e.g.,
p is denoted byU, = fu jp2pap,=pg and its cardinality is memory, cache, or network) [20]. Summing up the costs for all
denoted bym, 2 Z* . Then, for each edge cloyg2 P we the SEs on the same edge cloud, the total colocation cost for an
de ne its activation cost bya, > 0 if m, > 0 and by0 if edge cloudb can be represented lg,( ymp+ p) as given
mp = 0, meaning that an edge cloud can be switched off #@bove. The model is general in that the parametgrand
it hosts no SEs. The combined activation cost of all the edgan be tuned to suit any practical needs depending on the edge

clouds can be represented by cloud speci cation and the application type. Consequently, the
P total colocation cost in the system is characterized by
Ea = p2prm,>0dp: 1) P ,
P Ec = p2P( pMp + pMp): (4)

Placement cost. The placement cost is associated to

the creation of SEs, which is incurred by the running an‘Bhe colocation cost also serves as a soft constraint for the
communication of the servers for the SEs. For each u pximum number of SEs that can be hosted by an edge cloud.

u 2 U, the cost of placing her SE onto edge clopds .The above co;ts capt.ure_ the system performance from
characterized by, (p) > 0, which can vary due to the Iocationd'ﬁerent pe_rspectlves: activation and placement co;ts are frqm
difference or the heterogeneity of the edge clouds. DenotiH’%;e _op_eratlng eXpenses of the edge cloud prqwder, while
by p, 2 P the placement decision for the SE of userthe proximity and colo_catlon costs are from the perce|ve_d QoS of
combined cost of placing all the SEs onto the set of ed e users. Collectively, they provide a comprehensive model

clouds can then be represented by the overall system performance.

P C. Problem Formulation and Complexi
EL= youlu(Po): ) plexity

The overall performance of the application with SEs being

placed is measured by the total cost, i.e.,

lwith a slight abuse of notation, we also yge, i.e., the edge cloud that
is directly attached to the access point, to denote the access point. E=EAr+E_+Ep+ Ec: (5)



Algorithm 1 ITEM Ug

1. ag true; (u -]
2: while ag = true do . Search until convergence e N
3: ag false Up, Up, Up,
4: for q2 P do. . . Iterate over edge clouds ®OQOG ®60 ©
5: p f puiju2ug; . Current placement
6: pd EXPASION(pP; 0); . Expansion move Fig. 3. An example to illustrate the expansion move, where edge @dsd
7: if E(pY) <E (p) then . Improvement found selected for expansion.
8 PP ) optimal local adjustments can be simultaneously obtained by
o: ag true : ’
_ solving a graph cut probleprather than be carried out one
10: return p = fpy juzu @, by one or pairwise. As the graph cut problem can be solved
very ef ciently, the searching complexity is thus signi cantly
Algorithm 2 Expansion reduced.

1: construct an auxiliary grap® w.r.t. edge cloud;
2: obtain the minimuns-t cut on graphG using Edmonds- A. lteractive Expansion Moves

Karp max- ow algorithm; We propose ITEM — an algorithm for the ESEP problem

3: extract expansion decision from the gr_aph cu based on ITeractive Expansion Moves. The pseudocode of
4 for u2 U dp - Expanding edge cloud the algorithm is listed in Algorithm 1. Arexpansion move

5 Pu qif X“.= L is an optimization process where an edge clau@ P is

6: return p = fpy juzug; selected for expansion and variablgs are simultaneously

given a binary choice to either stay p% = p, or switch to
edge cloudg, i.e., pl = g Let p% = fp;:::;pd g denote
Note that different weights for different types of cost can bghe placement after one feasible expansion on edge dajoud
incorporated into the cost function directly, e.gp, for Ea,  with respect to current placement Each accepted expansion
lu(py) for EL, and , and , for Ec, respectively. Therefore, move will strictly reduce the total co&(p) and the algorithm
various tradeoff forms of the objective can be convenientkeeps searching by applying expansion moves iteratively over
achieved. The goal of ESEP is to make decisions on th# the edge clouds until convergence. As the solution space is
placement of SEs, i.e., determinirgy for all u 2 U, for nite, ITEM must terminate after a nite number of iterations.
a social VR application, such that the total csbf the edge Empirically, we have observed that in general it converges very
computing system is minimized. Note that for simplicity théast (within 10 iterations); see Figure 7(b).
model does not impose hard constraints. This is reasonable foThe resultant placemem® can be alternatively expressed
storage as it is generally considered cheap nowadays. Otbgran indicator vector with binary decision variables=
hard constraints due to hardware (e.g., GPU) or security fé&;:::;x,gwhere for allu 2 U we de nex, =1 if pl = q
quirements can be easily modeled by restricting the placemantix, = 0 otherwise. Note that i, = g already, we always
to predetermined candidate set of edge clouds. In general, §a&x, = 1. We denote byE9(x) the total cost corresponding
problem is hard to solve and we show that to the new placemerg9. The expansion move will compute
Theorem 1 (Complexity). ESEP is NP-hard. an optimalx with t_he minimumE9%(x ), _from which the_
new placemenp? will be produced. A simple example is
Proof. We conduct the proof via a polynomial-time reductionllustrated in Figure 3, where usets;ug and ug switch to
from the uncapacitated facility location (UFL) problem, whichhe selected edge clougl from edge cloudp;, p», and ps,
is known to be NP-hard [21]. The reduction can be built byespectively, in the expansion move, while the other users stay
treating the distance and cost functions in a UFL instaneg their current edge cloud. Usens andu, will stay in edge
as the placement and activation costs in an ESEP instangleud q according to the de nition of expansion move. We
respectively, and setting the other costs in ESEP to zed. have the following mappings. (Terms in circle represent that

the decisions for the users that are alreadyj@me alwaysl.)
I11. ALGORITHM DESIGN

. . . . . u us Uz us Ua Us Ue uz usg Ug
Essentially, ESEP requires minimizing a nonlinear function Pl d 49 P P Pr P2 P2 P2 P3
in a space with a large number of dimensions. A general p)‘j (14 f % ‘i ps p(z)‘ pé q1 ql

approach to exploring the optimum of such an optimization

problem is starting from an arbitrary SE placement and it- Obviously, the size of the solution space fer is 2™
eratively improving the solution by local adjustments. Whiland any brute-force search will result in exponential time
general purpose optimization techniques such as simulatminplexity. We will show in the following sections that
annealing can be employed, they require exponential timeantually,x can be ef ciently computed by encoding the total
theory and are extremely slow in practice. Our approach ¢estEY(x) in a graph and solving a corresponding graph cut
also based on local adjustments but we observeahsgt of problem leveraging existing max- ow algorithms.



B. Transforming the Objective Function The above transformation is conducted by some algebra and

Given a current placemeptand a selected edge cloggthe  PY @pplying equatior.xﬁ = Xy, which follows due to the fact
objective of ESEP after an expansion move can be expres#¥ Xu 2 f 0;1g. We introduce an auxiliaryn ~ m matrix R

in terms ofx. We de ne the negation of asx, i.e.,x =1 x. where (
The activation cost can be rewritten as follows. R 1 ifp,=p/60q;foruév;
X X Y uyv .
E,‘_‘\(x) = ap = (@ & Xu)+ q; (6) 0 otherwise
nﬁgfo p2Pnq uztp and anm-dimension indicator vectoy = fyi;:::;ymg where

. o ) ) yo =1 ifu2 UnUg andy, = 0 otherwise. Note that
meaning that the activation cost pf (p 6 0) is taken into the matrix R and vectory can be easily computed given
account if and only if there exists at least one SE staying @e current placement and the selected edge cload The
p, i.e., Xy = 0. Unfortunately, the product operation bringsxpression (8) can further be rewritten as

high-order terms irx, which increases the complexity to the X
problem solving. However, we can actually transform this term (gt poRuv)XuXy 9)
into a sum of quadratic and linear terms by introducing an (g'{V)ZL X
auxiliary variablez, for each edge c!ou@. For a particular + (M+1) q Yu p,Mp,)Xu+ pmg;
edge cloudp 2 P nq, the transformation is u2U p2Pnq
Y X
ap Xy = min_ a,(mp 1)z, XuZp): (7) The linear term in the colocation cost can be rewritten as
u2U, zp21 019 u2U, X q_
pMp = gXu p Xy
The nalterm 4 in (6) is used to correct the case where edge p2P yz2u p2 P ng u2L)J<]
cloud g does not host any SEs in the current placenger§o _ )
. . . = (g Yu p)Xut pmp;  (10)
this term incorporates the cost gfafter tf@f expansion move 20 52Png

if g is being used ipY, i.e., = ag(1 uz2u Xu)- o _ ' .
The placement cost and the proximity cost are easy to W&ich is obviously linear in thes,. In a nutshell, the colo-

rewritten. Observe that cation cost after the expansion move can be expressed as the
sum of the two terms, i.eEg = (9) + (10) . Consequently,
lu(p) = lu(@Xy + lu(pu)Xu; the total cost in the objective after the expansion move can be
d(py;pP1) = d(py;A)xu + d(p,; Pu)Xu; expressed in terms of, i.e.,,E9= EJ + E} + EJ + EZ.

d(pl; pY) = d(pu; Qxuxy + d(g; p)XuXy + d(PuiV)XuXv:  C. Optimizing Expansion Move via Minimizing Graph Cuts
Applying the above substitutions to expression (2) and (3) weWe show that an optimal expansion move can be obtained

can obtain by simply solving a graph cut problem. More speci cally, we
q _ X _ construct a graph and encode all the costs into weights on the
E/(x) = (lu(@Xu + Tu(Pu)Xu); graph edges. We then demonstrate that the min-cut of the graph
ug Y corresponds to the optimal decisions for the expansion move.
Eg() = fu(d(py;axu + d(py;pu)Xu) We rstdene ( pu;pv;0) = d(pu;q)+ d(g;p)  d(pu;py).
X u2u Graph construction. We now construct a grap8& which
+ fuv (d(py; XuXy + d(q; p)XuXy + d(pu; pv)XuXy): €ncodes all the costs in our model. We rst introdusenodes,
(uv)2L each of which corresponds to each useiVe then introduce

i q ) _ n nodes to represent the set of edge clouds. Finally, we add
The colocation cosE: after the expansion move is composeg source nodes and a sink nodé, wheres corresponds to

of two terms: the quadratic term and the linear term. DenotinfLcision0 and t corresponds to decisioh As a result, the
by mJ the number of SEs being placed onto edge clpafter ¢ of nodes irG is given byfu juoug[f pip2pg[f s;ta.

the expansion move arid, the current set of interacting Userry encode the activation cost, we rst reparameterize the right
pairs that have their SEs on the edge clgudhe quadratic ,,nq of (6) such that each quadratic monomial has exactly one
term can be simpli ed as follows. complemented variable (e.gz) with nonnegative coef cient,

2 X 2 X 2 i.e
p(mg) = o Xu)® + n( Xu) o X X X

pZPX X u2u p2Pnck u2U, X ap + ( apzp + apXuZp)

= qf Xu)? + p(mrz) 2mp Xu +( Xu)?) %%P p2Pnq u2Up X
XUZU pngg X H2Ue uzU = yU(apu XuZp, ap, Zpu)+ ap:

= qXuXv + ( pXuXv) u2U p2P

(u:v%L ){JZan (uv)2Lp X For eachu 2 U,, we add an edge frora to p, with weight

+ Xu + o1 2mp) Xy + mg): (8) @- We also introduce an edge from egeho the sinkt with

u2U b2 P ng u2U, weight a,. This graph structure ensures that only weight of



decision ( know that given an arbitrarg 9 there always exists a grajih
However, the minimuns-t cut can be computed in polynomial
time only if all the edge weights are nonnegative. Fprand
ap, this constraint follows in nature, whilg,,,  Ois satis ed
if we have ( pu;pv;d)  ( at p. Ruv)=fuv.

Now we show the equivalence. For each edge clpédq,
cost a, is counted as long as there exists one edge in set
f(u;p) juzup2engd [T (p;t)g being contained in the cut,
meaning that there exists 2 U, such thatx, = 0. Thanks
to the auxiliary variablez,, only edgep-t will be included in

decision :

Fig. 4. Constructed grap@ for encoding cosE Y. the cut if there are more than one user that satixgs= 0,
gontributing only a cost oé, to E9. For any pair of nodes
gndv in graphG, the pairwise cost ., contributes toE? if
@nd only ifx, =0 andx, = 1. This corresponds to the case

ap will be included in the graph cut. The encoding of th
correction term 4 in (6) is analogous to the above but we us
a simpler test-and-reject technique to handle this term [2
We ignore this term during the expansion move and explicit
add it toE} if there existsu 2 U such thatx, = 1. If the
cost would increase, we reject the expansion move.

For the other types of cost, we combine them all togeth
and simplify them to the following form after some simpl
algebra.

X

at edge(u; V) is contained in the minimuns-t cut, where
is assigned to the-component and is assigned to thé-
component. For any 2 U*, the unary cost is counted if and
ply if the cut contains edgs-u, meaningx, = 1. Similarly,
oranyu 2 U , the unary cost is counted if and only if the
cut contains edge-t, meaning thak, = 0. O
X X
uy XuXy + uXy + juixa+ 1 (11)
(uv)2L u2U+* u2U

We can still construct a graph and solve the corresponding
minimums-t cut problem on the graph when Theorem 2 does
Note that we spliu 2 U into two subsetd)* andU where not hold [23]. The graph construction process is explained in

v Oif u2 U* and , < 0 otherwise. The symbol,., is the following. Recall that in expression (11), for those edge

the coef cient of pairwise termswhere cloud pairsu;v that satisfy Theorem 2, we have,., (0
= fuy (PP (ot Ruv): for the others, we have,, < 0. The problem is with those
uv = Tuy U Pus By, a7 PRV terms with ,, < O since edge weights on the graph should
and , is the coef cient forunary terms where be nonnegative in order for the graph cut to be ef ciently
_ . . computed. To handle this situation, for the terms, x,Xy
u“r I”((Q lu(pu) + fu(d(pyi@)  dlpuipu)) with , < 0 we carry out the following transformation
+ (fuyd(a;p) + fyud(aip)  fuyv d(pu;pv))
veu uyv XuXy = uv Xu (1 Xv) uv Xy + uyv -

+(M+1) g Yu p,Mp, + q Yu pu;

and is simply a constant, which can actually be omitted frorote that after this transformation, we are able to incorporate
the graph construction as it has no impact on the expansi®§ term .y Xuxy into the graph by introducing new nodes
decisions. For each 2 U*, we add an edge from soursgo U Which representk, and edges with weights , > 0
nodeu with weight . Similarly, for eachu 2 U , we add between them, and edges from these nodes to mouéth
an edge from node to the sinkt with weightj .j. For each Weight ., > 0. The constant term, is merged into
interacting user pait;v, we add an edge from to v with i expression (11). In every expansion move we solve the
weight ., . The resultant graps is illustrated in Figure 4. Minimum s-t cut problem on this new graph and determine

The placement of SEs now can be obtained by computiffde placement of the SE for each use2 U according to the
the minimums-t cut on G by employing the Edmons-Karp following rule:
max- ow algorithm. Speci cally, we place the SEs after the 8
expansion move according to the following rule. 2q if xy =1 andx, =0;

q iflink s-uis in the cut L., Pu if Xy =0 andxy =1;
pd . " undetermined otherwise
p, otherwise
Theorem 2 (Correctnesy. Solving the minimization problem For those undetermined SEs, the graph cut solution produces
with objectiveE Y is equivalent to obtaining the minimusat  contradicting decisions or, andx, and thus, it is not able
cut of graphG as long as for any pair of interacting usersto dictate their placement out from the two choices. Therefore,
u;v2 U itsatises ( pu;pv;Q gt poRuv=fuy- we carry out an extra procedure to place those undetermined
SEs such that the total cost can further be reduced: for each

Proof. We rst show the feasibility of obtaining the minimum undetermined SE, we spf = qif placing it to g would bring
s-t cut on the graphG. Through the graph construction wecost reduction compared to keeping itmt
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= Fig. 6. Distribution of user interaction (i.e., read and write) in the synthesized
(a) Los Angeles (b) New York City data. (a) shows that the  100% of interactions are fronx ~ 100% most
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Fig. 5. Location of Starbucks shops (i.e., location for envisioned edge clou%%Sigcg\éiegﬂzirrss' i(r?)hgr‘(i)\r?{[fert?éttioﬁg()/o of users involve at most  100%

and distribution of Twitter users in the selected two cities.

of the users as is in the Twitter social graph. Although the
) __frequency of user interaction is not available with the used
So far, the ITEM algorithm works only for the static (of ine) gataset, we can actually synthesize it following the real-world
scenario. To handle online cases where placement decisigR§ributions revealed by [19]. The CDFs of the syntheti-
need to be updated following user movements, we assumgly generated frequencies of user interaction (including both
time-slotted system and we consider that a user has movgghq and “write”) are depicted in Figure 6(a). We obtain
if the user switches from one AP to another. Note that thge |ocations of all the Starbucks shops in the city of Los
granularity of a time slot can be at the level of minutes due $ngeles and there are in total 105 shops considered, as shown
the fact that users in social VR applications usually move aR Figure 5(a). We assume that each Starbucks shop will be
walking speed and small movements will have no impact yuipped with an edge cloud that is attached to its AP. The
the selection of APs, as a result of which no reoptimization jsnwork delay between any two Starbucks APs is measured
required. Keeping in mind that unexpected service interruptitw their geographical distance. We assume that each user is in
for unmoved users should be minimized, the design of th&e vicinity of the Starbucks shop that is closest to her.
online algorithm is as follows: Denote the set of users that The dataset pruned for New York City (denoted by Twitter-
have moved a8 in each time slot. At the beginning of each\yc) contains 6068 users and we synthesize the frequency of
time slot we rst incorporate the migration overhead into thgser interaction following the same procedure as above (see
placement cost for users @haccording to the current Iocations,:igure 6(b)). The number of considered Starbucks shops in
of their SEs. Then, we carry out ITEM where we modify th@ew York is 117 in total, as illustrated in Figure 5(b).
expansion move by trimming the objective functiBf where  gettings. Our implementation of ITEM is based on a max-
we plug in the decisions, =0 for allu2 UnO. Finally, we oy implementation detailed in [24]. The activation cost for
place the SEs of usets2 U according to the minimum grapheach of the edge clouds is generated randomly following a
cut solution; the placement for other users remain unchangggiform distribution. For the placement cost, we assume that
there are three different price levels and the ratio between the
base prices of adjacent levels is set to 2. This is to represent
With real-world data we validate the performance of ITEMhe heterogeneity in the cost of using an edge cloud in different
for both of ine and online cases. areas in the city. The actual placement price for each user
placing her SE on an edge cloud is generated following
a normal distribution with the averagease and standard
Dataset. We obtain a social network dataset by crawlingleviation0:5 base. The communication frequenéy; of each
Twitter website. The dataset contains a Twitter social graph aser is set to be the sum of frequency of access originated
well as user locations in GPS coordinates. We select two majosm useru. For the colocation cost, we randomly generate the
cities in the U.S., namely Los Angeles and New York City, ancbef cients following a uniform distribution. We normalize the
we prune the dataset keeping the users from the two cities. Tbar types of cost to the rand®; 1] and we set the parameters
two cities have quite different user distribution which is morsuch that all the costs share equal importance. We rst compare
uniform in Los Angeles and is more concentrated in New Yorkith two baseline solutions of interest: Random (randomly
City (cf. Figure 5). For the locations of envisioned edge cloudgenerated placement) and Greedy (the greedy placement where
we decide to use the locations of the Starbucks due to the f&&s are placed with closest proximity). To further understand
that Starbucks shops in a city usually can achieve a decémt impact of ITEM on different types of cost, we also compare
coverage for users. In addition, the distribution of Starbuckisree different ITEM-based solutions: ITEM-PLAC (with only
shops actually follows the population density, making theithe placement cost optimized), ITEM-PLAC-PROX (with both
perfect locations for edge cloud deployment in the future. the placement and the proximity cost optimized), and ITEM-
The dataset pruned for Los Angeles (denoted by TwitteBVERALL (with all the costs optimized).
LA) contains 7553 users in total. We keep the relationship Results. The performance of ITEM, compared with Ran-

D. Discussion for Online Cases

IV. EVALUATION

A. Ofine Performance
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networks with tted user interactions. We choose a 6-hour
period (15h to 20h on date Feb 12, 2014) from the dataset.
The number of users varies from hour to hour but is generally
around 300 during the considered time period. The users are
moving around the city over time and the time granularity
dom and Greedy, is validated in Figure 7(a). All the resulis set to one minute. We simulate a social graph on these
are obtained by averaging ve independent runs and awsers following a power-law distribution with exponent 2.5 and
normalized to the results of ITEM. As we can see that, ITEMe generate the frequency of user interaction using the same
outperforms both Random and Greedy as expected and the eggtroach as for Twitter-LA. We envision an edge computing
reduction achieved by ITEM can bE50% when compared system with15 edge clouds that are deployed in the city of
with Random andL00% when compared with Greedy. ThisRome and the locations of the edge clouds are chosen from
is due to the fact that Random does not consider any of tife major metro stations in Rome [11].
costs, while Greedy only minimizes part of the proximity cost We implement a discrete-time simulator where at the begin-
(from the user to her SE). Figure 7(b) shows the convergimghg of each time slot (e.g., each minute here) we obtain the
speed of ITEM in both the Twitter-LA and the Twitter-NYCset of users that have moved and then, we invoke the ITEM
scenarios with ve independent runs each. In general, ITEMlgorithm on those users to obtain new placement decisions.
converges very fast; it reduces the cost signi cantly in the rsfve use the above mentioned Rome Taxi dataset and other
few iterations and converges within 10 iterations in most cas@grameters that are generated following the same settings as
Figure 8 illustrates the breakdown of the total cost arid the of ine case to feed the simulator. We then compare the
studies the impact of ITEM on each cost type. We observesults with that of Random as well as of Greedy.

that ITEM-PLAC minimizes the placement coBf, while  Resylts. Figure 9 depicts the results for online performance
incurring large activation cosEa and proximity costEp  eyaluation. The experiments are done independently for 6
as expected. Surprisingly, the colocation c&&t is not hoyrs as described in the settings. We only show the hour of
signi cant. This is mainly because when minimizing the g 55 gl tests in different hours show similar behaviors. Al
placement cost, SEs are spread out among the edge cloygs.values in the plots are averaged among ve independent
which is also favorable to the colocation cds¢ sinceEc  pyns. The values in the upper plot are normalized to the values
is characterized with a super-linear function. ITEM-PLACyptained by ITEM. As we can see that ITEM outperforms both
PROX tries to minimize both the placement cost and thandom and Greedy as expected and can achieve an overall
proximity cost. As we can see that ignoring the colocatiogyst reduction of aroun80% under any circumstances in the
costEc can be very problematic ac is extremely high gsimulated scenario. In the lower plot, we explore the impact
(12 more) in the solution by ITEM-PLAC-PROX. Overall, of yser mobility to the performance of ITEM, where we show
balancing the four types of cost gives the best performangg costs obtained by ITEM normalized to the smallest value
to ITEM. The results con rm our motivation thaitll the four e have seen from the solutions of ITEM and the curve of
types of cost are critically important and should be optimizegser mopbility ratio measured by the ratio between the number
simultaneously in an edge computing system, which is € moved users and of all users. As we can see that, the
major contribution of this paper. performance of ITEM is quite stablé:l 1:2 the minimum)
in general and most of the time a positive correlation between
the cost of ITEM and the mobility ratio can be observed, i.e.,
Dataset and settings. For the online case, mobility is of ITEM performs slightly better with lower mobility. This is due
concern. We use the Rome Taxi dataset and synthesize soahe fact that the online version of ITEM only reoptimizes

(a) Los Angeles (b) New York City
Fig. 8. Total cost breakdown and impact of ITEM on each cost type.

B. Online Performance



the placement for users that have moved. With a small mobilifp)FG) and No. 61761136014 (NSFC), and the DFG Collab-
ratio, the system remains mostly unchanged and ITEM triesative Research Center (CRC) 1053 — MAKI. Ting He was
to control the QoS interruption on the unmoved users. sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defense under Agreement Number W911NF-16-3-
v RELA.TED W?RK 0001. Jun Li was funded by the National Science Foundation

Data placement for online social networks. A lot of \;nqer Grant No. 1564348. The views and conclusions con-
work has been carried out on optimizing cost or performanggneq in this document are those of the authors and should
via data placement or replication for online social networksy pe interpreted as representing the of cial policies, either
[13]-[16]. Jiao et al. propose cosplay, a cost effective dalgnressed or implied, of the U.S. Army Research Laboratory,
placement policy that can guarantee QoS in online SOC{gk y.S. Government, the U.K. Ministry of Defense or the
networks [13]. Later, they further investigate the problergy k Government. The U.S. and U.K. Governments are au-

by considering multiple objectives [15]. Yu and Pan proposgorized to reproduce and distribute reprints for Government
an associated data placement (ADP) scheme which aimsidnoses notwithstanding any copyright notation hereon.

improve the colocation of associated data and localized data
serving [14]. Recently, Zhou et al. explore the problem of joint

placement and replication of social network data with the gogt;
of minimizing network traf ¢ [16]. [2]

Resource management in edge computingln the pres- 3]
ence of multiple edge clouds, resource management is of high
importance as it directly dictates service quality and system
ef ciency. Research efforts have been made mostly on resour%ﬁ
allocation and job scheduling [5]-[11]. Jia et al. study the
load balancing among multiple edge clouds in [6]. Tong ef6]
al. discuss workload placement for delay minimization in 857]
hierarchical edge computing architecture [7]. Wang et al. [8
and Urgaonkar et al. [9] focus on stochastic frameworks folél
optimizing dynamic workload migration based on Markov
Decision Processes (MDPs) and Lyapunov optimization. Reej
cently, Tan et al. study online job dispatching and scheduling
in edge clouds [10]. Wang et al. investigate online mobility[-lol
oblivious resource allocation for edge computing [11].

In short, none of the existing models are able to characterizé]
the joint impact of user interactions in social VR applicationﬁ2
and resource contention in edge clouds for service placem nt],
which is captured in our model. Moreover, we incorporate the
economic effects on activating and using edge clouds. (13]

V1. CONCLUSION (14]

In this paper we conduct the rst formal study of theis]
service entity placement problem for social VR applicatio
in edge computing. We characterize the major challenges va ]
a comprehensive cost model and propose a novel algoritiumy
based on iteratively solving a series of minimum graph cu 31.8]
The algorithm is exible and is applicable in both of ine and
online cases. The performance of the proposed algorithm is
conrmed by extensive experiments. As the intersection &)
VR and edge computing is gaining more and more attentiggg,
the solution provided in this paper will serve as a baseline
and will foster future exploration in this direction. Sever
research guestions are still open including developing onli
algorithms for SE placement with edge cloud recon guratiofz2]
cost included. We leave them to future work.
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