
Service Entity Placement for Social Virtual Reality
Applications in Edge Computing

Lin Wang
TU Darmstadt

Darmstadt, Germany
wang@tk.tu-darmstadt.de

Lei Jiao
University of Oregon

Eugene, OR, USA
jiao@cs.uoregon.edu

Ting He
Pennsylvania State University

State College, PA, USA
t.he@cse.psu.edu

Jun Li
University of Oregon

Eugene, OR, USA
lijun@cs.uoregon.edu

Max Mühlhäuser
TU Darmstadt

Darmstadt, Germany
max@tk.tu-darmstadt.de

Abstract—While social Virtual Reality (VR) applications such
as Facebook Spaces are becoming popular, they are not compat-
ible with classic mobile- or cloud-based solutions due to their
processing of tremendous data and exchange of delay-sensitive
metadata. Edge computing may ful�ll these demands better, but
it is still an open problem to deploy social VR applications in an
edge infrastructure while supporting economic operations of the
edge clouds and satisfactory quality-of-service for the users.

This paper presents the �rst formal study of this problem. We
model and formulate a combinatorial optimization problem that
captures all intertwined goals. We propose ITEM, an iterative
algorithm with fast and big “moves” where in each iteration, we
construct a graph to encode all the costs and convert the cost op-
timization into a graph cut problem. By obtaining the minimum
s-t cut via existing max-�ow algorithms, we can simultaneously
determine the placement of multiple service entities, and thus, the
original problem can be addressed by solving a series of graph
cuts. Our evaluations with large-scale, real-world data traces
demonstrate that ITEM converges fast and outperforms baseline
approaches by more than2� in one-shot placement and around
1:3� in dynamic, online scenarios where users move arbitrarily
in the system.

I. I NTRODUCTION

Virtual Reality (VR) and Augmented Reality (AR) are com-
monly believed to be the killer applications for the emerging
edge computing paradigm [1], where resources are available
for service provisioning in much closer proximity to end users
with low-delay and low-jitter network connections. VR �ts
well in this paradigm due to its resource-hungry and delay-
sensitive nature. As an inevitable technology trend, VR has
gained popularity. Recently at WWDC 2017, Apple released
a new tool ARKit for developing VR applications on its
platforms. In the meanwhile, Facebook is augmenting its
social network with Virtual/Augmented Reality and recently,
it released its new social network platform named Spaces.

In fact, edge computing has already been adopted for
VR in industry for handling the situation posed by resource
limitation of local processing and large, unpredictable latency
of remote cloud-based processing. For example, Apple uses
iMac to support VR rendering and Facebook Oculus employs
a Windows PC for computing. According to the Open Edge
Computing initiative [2], an edge cloud will be able to offer
compute and storage resources to any user in close proximity
through an open and globally standardized mechanism, which
allows a set of edge clouds in the same geographical region

Edge Cloud

CE (User) AP
SE

Access

CE-SE association User interaction

MAN

Fig. 1. An example scenario to illustrate the service entity placement problem
for social VR applications in the edge environment. (AP: Access Point, CE:
Client Entity, SE: Service Entity)

to form a shared edge resource pool. With the help of light-
weight virtualization techniques, resources will be allocated at
a �ne granularity (e.g., per user) subject to quality-of-service
(QoS) requirements and system-wide optimization goals.

In this paper, we focus on VR applications with online social
network support (referred to as social VR applications) and
we study the problem of placing service entities for social
VR applications in the edge environment. As illustrated in
Figure 1, a social VR application consists of two parts: service
entity (SE) and client entity (CE, on user device). The SE,
de�ned as the bundle of the user's personal data and the
processing logics on the data, takes care of the user state and
computation-intensive tasks such as scene rendering, object
recognition and tracking, and the interaction between users,
while the CE is only in charge of displaying the video frames
rendered by the SE and monitoring user behaviors. The service
entity placement problem is to decide where to place the
SE of each user among the edge clouds in order to achieve
economic operations of the edge clouds as well as satisfactory
QoS for the users. We call this problemedge service entity
placement (ESEP). While motivated by social VR applications,
the ESEP problem is fundamental for any applications that
require interactions both between each user and its service
and between (the services of) different users.

The ESEP problem is non-trivial mainly due to the follow-
ing intertwined challenges: (1) Edge clouds are heterogeneous
in terms of activation and running costs and thus, achieving
the best economic outcome wouldpush the SEs to edge
clouds with lower costs; (2) SEs need to exchange metadata

frequently with the associated CEs and other SEs, as users
are updating their scenes and interacting with each other in
social VR applications, e.g., accessing the state of other users
or collaboratively completing a task, and thus,placing SEs
closer to each other would result in better QoS perceived
by the users; (3) Due to the fact that edge clouds are not
intentionally designed to simultaneously accommodate a large
number of SEs, especially for VR applications where speci�c
hardware such as GPU may be involved, resource contention
needs to be controlled, which suggests thateach edge cloud
should not be too crowded with SEs. The second challenge is
unique to ESEP and all these intrinsically intertwined goals
together complicate the problem.

Priori research efforts fall short of fully addressing the
above challenges all together. On the one hand, most studies
on edge computing are focused on computation of�oading
techniques and hardware/software architectures [3], [4]; edge
resource management proposals generally lack the speci�c
consideration of the interactions between users as in the case of
social VR applications [5]–[11]. On the other hand, solutions
for data placement across servers or distributed clouds for
social networks address the optimization of network traf�c or
data storage etc. but neglect the impact of multiple important
factors in the edge context such as activation cost and resource
contention [12]–[16], which fundamentally change the set-
tings and require different solution approaches. While general
service placement problem has been extensively explored in
various settings [17], [18], no existing algorithms are known
to solve the ESEP problem.

Summary of contributions. We present the �rst formal
study of ESEP and make the following contributions:
� We model the identi�ed challenges with four types of cost
including the activation cost, the placement cost, the proximity
cost, and the colocation cost. The considered cost models are
comprehensive yet practical, and are general enough to capture
a wide range of concrete performance measures in reality.
Based on these models, we formulate the ESEP problem as a
combinatorial optimization, which we show is NP-hard.
� We propose the ITerative Expansion Moves (ITEM) al-
gorithm to solve the formulated combinatorial optimization
problem based on iteratively solving a series of minimum
s-t cut instances. In each iteration, ITEM selects an edge
cloud and performs an “expansion move”, which is a local
optimization of the current SE placement by determining
whether each SE should stay as is or move to the selected
edge cloud. We show that an expansion move is actually
equivalent to solving a minimums-t cut problem on a carefully
constructed graph and we present the technique to build the
graph with all of our costs encoded. ITEM has multiple
advantages: (1) The graph construction is deterministic and
easy to implement; (2) Placement decisions are made with big
“moves”, i.e., not only one but many SEs can be determined
simultaneously in each iteration; (3) The decision-making is
based on existing polynomial-time max-�ow algorithms; (4)
It converges fast, thanks to the “big move” in each iteration.
� We carry out extensive experiments with large-scale real-

TABLE I
L IST OF MAIN NOTATIONS

P set of edge clouds
U set of users
Up set of users with SEs placed on edge cloudp
pu edge cloud where the SE of useru is placed
p�

u edge cloud attached to the AP that useru is connected to
p set of SE placement for all the users, i.e.,f p1 ; :::; pm g
p q set of SE placement after expansion move on edge cloudq
f u comm. frequency between the CE and the SE of useru

f u;v frequency of access from useru to userv
d(p; q) network delay between edge cloudp andq

mp number of SEs on edge cloudp
ap activation cost of edge cloudp

lu (pu) cost of placing the SE for useru on edge cloudpu
� p ; � p parameters in colocation cost of edge cloudp

L set of all interacting user pairs
x binary decisions in an expansion move, i.e.,f x1 ; :::; x m g

world data traces to validate the performance of ITEM. For
the of�ine case, we employ a Twitter dataset with realistic user
interactions and derive edge cloud locations from Starbucks
locations. We select two major cities in the US, namely Los
Angeles (LA) and New York City (NYC), to conduct our
evaluations. For the LA scenario, we collect the locations
of 105 Starbucks shops and generate a subset of the Twitter
dataset with 7553 users by pruning the Twitter dataset ac-
cording to user location. For the NYC scenario, the number
of considered Starbucks shops is 117 and the pruned dataset
contains 6068 users. The user interactions between users are
synthesized following realistic distributions disclosed in [19].
For the online case, we use a Rome taxi dataset with around
300 taxi trajectories and we synthesize social interactions
between the taxis. We select 15 major metro stations in Rome
as edge cloud locations. Using these real-world datasets, we
compare ITEM with baseline placement solutions and the key
�ndings are: ITEM can well balance the four types of cost and
outperforms the baselines up to2� and 1:3� in of�ine and
online cases, respectively, while exhibiting fast convergence.

II. PROBLEM FORMULATION

We provide model for the system and introduce four types of
cost, based on which we formulate the ESEP problem. Table I
lists the main notations we will use throughout the paper.

A. The System

We consider a metropolitan-area edge computing system
which consists of a set ofn edge clouds, denoted byP =
f p1; : : : ; pn g, that are dispersed in a city, e.g., inside bars
or restaurants. Each edge cloud is accompanied by an access
point (AP) that allows the user to connect to the platform.
We assume that resources in the edge clouds are virtualized
using container-based lightweight virtualization technologies
and can thus be allocated and shared �exibly. All the edge
clouds are connected to a metropolitan area network (MAN)
inside a city and the delay between each pair of edge clouds
p andq is given by functiond(p; q) for p; q 2 P.

We consider the problem of provisioning a social VR
application on the given set of edge clouds to servem users
distributed in the MAN. An exemplary scenario is illustrated

User u pu pv

d(u, pu)

d(p!
u , pu)

d(pu , pv)

AP(p!
u)

Association Access

Fig. 2. Proximity cost includes the communication delay between the user
and her SE and the interaction delay between users.

in Figure 1. The set of users is given byU = f u1; : : : ; um g.
Each useru has access to the edge cloud system via its nearest
AP, denoted byp�

u , in her vicinity.1 For each useru 2 U, an
SE is brought up on one of the edge cloudspu to handle
the computation within the application related to useru (e.g.,
rendering scenes, recognizing and tracking objects for useru).
The SE encapsulates all the necessary runtime environment
as well as the service state for the user. The frequency of
communication between a useru and her SEpu for updating
scenes and monitoring user behaviors is denoted byf u . In
addition to employing the SE to process data, each user also
interacts with other users within the application, e.g., accessing
the pro�le or updates of other users or even completing a
task collaboratively with other users. The frequency of access
from useru to userv is given byf u;v (f u;v , 0 if u = v).
We denote byL the set of all interacting user pairs where
L = f (u; v) ju;v 2 U ^ u6= v g.

B. Cost Models

We jointly consider multiple performance measures of the
system by modeling four types of costs as detailed below.

Activation cost. For each of the edge clouds, if there is at
least one SE being placed on it, then a static activation cost
has to be paid. Such activation cost is incurred by the cooling
or other maintenance efforts in the edge cloud irrespective of
SEs. Assume that the set of SEs that are placed on edge cloud
p is denoted byUp = f u jp2 P ^ pu = pg and its cardinality is
denoted bymp 2 Z+ . Then, for each edge cloudp 2 P we
de�ne its activation cost byap > 0 if mp > 0 and by 0 if
mp = 0 , meaning that an edge cloud can be switched off if
it hosts no SEs. The combined activation cost of all the edge
clouds can be represented by

EA =
P

p2 P ^ m p > 0ap: (1)

Placement cost. The placement cost is associated to
the creation of SEs, which is incurred by the running and
communication of the servers for the SEs. For each user
u 2 U, the cost of placing her SE onto edge cloudp is
characterized bylu (p) > 0, which can vary due to the location
difference or the heterogeneity of the edge clouds. Denoting
by pu 2 P the placement decision for the SE of useru, the
combined cost of placing all the SEs onto the set of edge
clouds can then be represented by

EL =
P

u2 U lu (pu): (2)

1With a slight abuse of notation, we also usep�
u , i.e., the edge cloud that

is directly attached to the access point, to denote the access point.

Proximity cost. Proximity is a key performance metric in
edge computing. The proximity measure of a user contains two
parts: how timely a user (or her CE) interacts with her SE and
how timely a user interacts with other users, as depicted in
Figure 2. In order to give priority to frequent communication
or interaction, we incorporate the communication frequency
f u � 0 between the CE and the SE of useru and the
access frequencyf u;v � 0 from user u to user v. As a
result, the combined proximity cost for the former is given
by

P
u2 U f u d(u; pu), while for the latter it is given byP

(u;v)2 L f u;v d(pu ; pv). We notice that the delay between a
user and its AP is actually irrelevant to the placement decision.
For simplicity, we will omit it and will use the following form
for the total proximity cost in the rest of the paper.

ED =
P

u2 U f u d(p�
u ; pu) +

P
(u;v)2 L f u;v d(pu ; pv): (3)

Colocation cost. The colocation cost is incurred by the
resource contention among the SEs that are placed on the
same edge cloud. This is considered unavoidable as edge
clouds are not intentionally designed for large-scale resource
multiplexing and performance isolation is typically dif�cult
with light-weight virtualization. The performance degradation
due to SE colocation can be characterized by� pm2

p + � pmp,
where � p and � p are parameters. The reasoning behind this
model is as follows. In the worse case, all themp SEs
colocated on the same edge cloud rely on a single CPU core
for processing and thus, the stretch on execution time, known
as performance degradation ratio here, can be as large asmp

following the simple round-robin scheduling policy. Therefore,
it is reasonable to use a general function� pmp + � p to
characterize the cost for the performance degradation of one of
the colocated SEs given that performance degradation can also
be induced by contention of resources other than CPU (e.g.,
memory, cache, or network) [20]. Summing up the costs for all
the SEs on the same edge cloud, the total colocation cost for an
edge cloudp can be represented bymp(� pmp + � p) as given
above. The model is general in that the parameters� p and� p

can be tuned to suit any practical needs depending on the edge
cloud speci�cation and the application type. Consequently, the
total colocation cost in the system is characterized by

EC =
P

p2 P (� pm2
p + � pmp): (4)

The colocation cost also serves as a soft constraint for the
maximum number of SEs that can be hosted by an edge cloud.

The above costs capture the system performance from
different perspectives: activation and placement costs are from
the operating expenses of the edge cloud provider, while
proximity and colocation costs are from the perceived QoS of
the users. Collectively, they provide a comprehensive model
of the overall system performance.

C. Problem Formulation and Complexity

The overall performance of the application with SEs being
placed is measured by the total cost, i.e.,

E = EA + EL + ED + EC : (5)

Algorithm 1 ITEM
1: �ag true;
2: while �ag = true do . Search until convergence
3: �ag false;
4: for q 2 P do . Iterate over edge clouds
5: p f pu ju2 U g; . Current placement
6: pq EXPASION(p; q); . Expansion move
7: if E (pq) < E (p) then . Improvement found
8: p pq;
9: �ag true;

10: return p = f pu ju2 U g;

Algorithm 2 Expansion
1: construct an auxiliary graphG w.r.t. edge cloudq;
2: obtain the minimums-t cut on graphG using Edmonds-

Karp max-�ow algorithm;
3: extract expansion decisionx from the graph cut;
4: for u 2 U do . Expanding edge cloudq
5: pu q if xu = 1 ;
6: return p = f pu ju2 U g;

Note that different weights for different types of cost can be
incorporated into the cost function directly, e.g.,ap for EA ,
lu (pu) for EL , and� p and� p for EC , respectively. Therefore,
various tradeoff forms of the objective can be conveniently
achieved. The goal of ESEP is to make decisions on the
placement of SEs, i.e., determiningpu for all u 2 U, for
a social VR application, such that the total costE of the edge
computing system is minimized. Note that for simplicity the
model does not impose hard constraints. This is reasonable for
storage as it is generally considered cheap nowadays. Other
hard constraints due to hardware (e.g., GPU) or security re-
quirements can be easily modeled by restricting the placement
to predetermined candidate set of edge clouds. In general, the
problem is hard to solve and we show that

Theorem 1 (Complexity). ESEP is NP-hard.

Proof. We conduct the proof via a polynomial-time reduction
from the uncapacitated facility location (UFL) problem, which
is known to be NP-hard [21]. The reduction can be built by
treating the distance and cost functions in a UFL instance
as the placement and activation costs in an ESEP instance,
respectively, and setting the other costs in ESEP to zero.

III. A LGORITHM DESIGN

Essentially, ESEP requires minimizing a nonlinear function
in a space with a large number of dimensions. A general
approach to exploring the optimum of such an optimization
problem is starting from an arbitrary SE placement and it-
eratively improving the solution by local adjustments. While
general purpose optimization techniques such as simulated
annealing can be employed, they require exponential time in
theory and are extremely slow in practice. Our approach is
also based on local adjustments but we observe thata set of

u1u1 u2u2

u3u3 u4u4 u5u5 u6u6 u7u7 u8u8 u9u9

Uq

Up1 Up2 Up3

Fig. 3. An example to illustrate the expansion move, where edge cloudq is
selected for expansion.

optimal local adjustments can be simultaneously obtained by
solving a graph cut problem, rather than be carried out one
by one or pairwise. As the graph cut problem can be solved
very ef�ciently, the searching complexity is thus signi�cantly
reduced.

A. Iteractive Expansion Moves

We propose ITEM – an algorithm for the ESEP problem
based on ITeractive Expansion Moves. The pseudocode of
the algorithm is listed in Algorithm 1. Anexpansion move
is an optimization process where an edge cloudq 2 P is
selected for expansion and variablespu are simultaneously
given a binary choice to either stay aspq

u = pu or switch to
edge cloudq, i.e., pq

u = q. Let pq = f pq
1; : : : ; pq

m g denote
the placement after one feasible expansion on edge cloudq
with respect to current placementp. Each accepted expansion
move will strictly reduce the total costE(p) and the algorithm
keeps searching by applying expansion moves iteratively over
all the edge clouds until convergence. As the solution space is
�nite, ITEM must terminate after a �nite number of iterations.
Empirically, we have observed that in general it converges very
fast (within 10 iterations); see Figure 7(b).

The resultant placementpq can be alternatively expressed
by an indicator vector with binary decision variablesx =
f x1; : : : ; xm g where for allu 2 U we de�nexu = 1 if pq

u = q
andxu = 0 otherwise. Note that ifpu = q already, we always
setxu = 1 . We denote byE q(x) the total cost corresponding
to the new placementpq. The expansion move will compute
an optimal x � with the minimum E q(x �), from which the
new placementpq will be produced. A simple example is
illustrated in Figure 3, where usersu4; u8 and u9 switch to
the selected edge cloudq from edge cloudp1, p2, and p3,
respectively, in the expansion move, while the other users stay
at their current edge cloud. Usersu1 andu2 will stay in edge
cloud q according to the de�nition of expansion move. We
have the following mappings. (Terms in circle represent that
the decisions for the users that are already onq are always1.)

u u1 u2 u3 u4 u5 u6 u7 u8 u9
p q q p1 p1 p1 p2 p2 p2 p3

p q q q p1 q p1 p2 p2 q q
x 1
 1
 0 1 0 0 0 1 1

Obviously, the size of the solution space forx � is 2m

and any brute-force search will result in exponential time
complexity. We will show in the following sections that
actually,x � can be ef�ciently computed by encoding the total
costE q(x) in a graph and solving a corresponding graph cut
problem leveraging existing max-�ow algorithms.

B. Transforming the Objective Function

Given a current placementp and a selected edge cloudq, the
objective of ESEP after an expansion move can be expressed
in terms ofx. We de�ne the negation ofx as�x, i.e., �x = 1 � x.
The activation cost can be rewritten as follows.

E q
A (x) =

X

p2 P
m q

p > 0

ap =
X

p2 P nq

(ap � ap

Y

u2 Up

xu) + � q; (6)

meaning that the activation cost ofp (p 6= q) is taken into
account if and only if there exists at least one SE staying at
p, i.e., xu = 0 . Unfortunately, the product operation brings
high-order terms inx, which increases the complexity to the
problem solving. However, we can actually transform this term
into a sum of quadratic and linear terms by introducing an
auxiliary variablezp for each edge cloudp. For a particular
edge cloudp 2 P n q, the transformation is

� ap

Y

u2 Up

xu = min
zp 2f 0;1g

ap((mp � 1)zp �
X

u2 Up

xu zp): (7)

The �nal term � q in (6) is used to correct the case where edge
cloud q does not host any SEs in the current placementp. So
this term incorporates the cost ofq after the expansion move
if q is being used inpq, i.e., � q = aq(1 �

Q
u2 U �xu).

The placement cost and the proximity cost are easy to be
rewritten. Observe that

lu (pq
u) = lu (q)xu + lu (pu)�xu ;

d(p�
u ; pq

u) = d(p�
u ; q)xu + d(p�

u ; pu)�xu ;

d(pq
u ; pq

v) = d(pu ; q)�xu xv + d(q; pv)xu �xv + d(pu ; pv)�xu �xv :

Applying the above substitutions to expression (2) and (3) we
can obtain

E q
L (x) =

X

u2 U

(lu (q)xu + lu (pu)�xu);

E q
D (x) =

X

u2 U

f u (d(p�
u ; q)xu + d(p�

u ; pu)�xu)

+
X

(u;v)2 L

f u;v (d(pu ; q)�xu xv + d(q; pv)xu �xv + d(pu ; pv)�xu �xv):

The colocation costE q
C after the expansion move is composed

of two terms: the quadratic term and the linear term. Denoting
by mq

p the number of SEs being placed onto edge cloudp after
the expansion move andL p the current set of interacting user
pairs that have their SEs on the edge cloudp, the quadratic
term can be simpli�ed as follows.

X

p2 P

� p(mq
p)2 = � q(

X

u2 U

xu)2 +
X

p2 P nq

� p(
X

u2 Up

�xu)2

= � q(
X

u2 U

xu)2 +
X

p2 P nq

� p(m2
p � 2mp

X

u2 Up

xu + (
X

u2 Up

xu)2)

=
X

(u;v)2 L

� qxu xv +
X

p2 P nq

(
X

(u;v)2 L p

� pxu xv)

+
X

u2 U

� qxu +
X

p2 P nq

� p((1 � 2mp)
X

u2 Up

xu + m2
p): (8)

The above transformation is conducted by some algebra and
by applying equationx2

u = xu , which follows due to the fact
that xu 2 f 0; 1g. We introduce an auxiliarym � m matrix R
where

R u;v ,

(
1 if pu = pv 6= q; for u 6= v;

0 otherwise:

and anm-dimension indicator vectory = f y1; :::; ym g where
yu = 1 if u 2 U n Uq and yu = 0 otherwise. Note that
the matrix R and vectory can be easily computed given
the current placementp and the selected edge cloudq. The
expression (8) can further be rewritten as

X

(u;v)2 L

� (� q + � pu R u;v)�xu xv (9)

+
X

u2 U

((m + 1) � q � yu � pu mpu)xu +
X

p2 P nq

� pm2
p:

The linear term in the colocation cost can be rewritten as
X

p2 P

� pmq
p =

X

u2 U

� qxu +
X

p2 P nq

� p

X

u2 Up

�xu

=
X

u2 U

(� q � yu � pu)xu +
X

p2 P nq

� pmp; (10)

which is obviously linear in thexu . In a nutshell, the colo-
cation cost after the expansion move can be expressed as the
sum of the two terms, i.e.,E q

C = (9) + (10) . Consequently,
the total cost in the objective after the expansion move can be
expressed in terms ofx, i.e., E q = E q

A + E q
L + E q

D + E q
C .

C. Optimizing Expansion Move via Minimizing Graph Cuts

We show that an optimal expansion move can be obtained
by simply solving a graph cut problem. More speci�cally, we
construct a graph and encode all the costs into weights on the
graph edges. We then demonstrate that the min-cut of the graph
corresponds to the optimal decisions for the expansion move.
We �rst de�ne �(pu ; pv ; q) = d(pu ; q) + d(q; pv) � d(pu ; pv).

Graph construction. We now construct a graphG which
encodes all the costs in our model. We �rst introducem nodes,
each of which corresponds to each useru. We then introduce
n nodes to represent the set of edge clouds. Finally, we add
a source nodes and a sink nodet, wheres corresponds to
decision0 and t corresponds to decision1. As a result, the
set of nodes inG is given byf u ju2 U g [f p jp2 P g [f s; tg.
To encode the activation cost, we �rst reparameterize the right
hand of (6) such that each quadratic monomial has exactly one
complemented variable (e.g.,�xz) with nonnegative coef�cient,
i.e.,

X

p2 P

ap +
X

p2 P nq

(� apzp +
X

u2 Up

ap �xu zp)

=
X

u2 U

yu (apu �xu zpu � apu zpu) +
X

p2 P

ap:

For eachu 2 Up, we add an edge fromu to pu with weight
ap. We also introduce an edge from eachp to the sinkt with
weight ap. This graph structure ensures that only weight of

p1p1

u1u1 u2u2 u3u3 É

t
decision 1

u4u4

p2p2

s

pnpn

um

! u

|! u |

! u,v

decision 0

ap1

ap1 ap2

ap2

apn

apn

U+ U !

Fig. 4. Constructed graphG for encoding costE q .

ap will be included in the graph cut. The encoding of the
correction term� q in (6) is analogous to the above but we use
a simpler test-and-reject technique to handle this term [22].
We ignore this term during the expansion move and explicitly
add it to E q

A if there existsu 2 U such thatxu = 1 . If the
cost would increase, we reject the expansion move.

For the other types of cost, we combine them all together
and simplify them to the following form after some simple
algebra.

X

(u;v)2 L

� u;v �xu xv +
X

u2 U +

� u xu +
X

u2 U �

j� u j �xu + �: (11)

Note that we splitu 2 U into two subsetsU+ andU � where
� u � 0 if u 2 U+ and � u < 0 otherwise. The symbol� u;v is
the coef�cient of pairwise terms, where

� u;v = f u;v �(pu ; pv ; q) � (� q + � pu R u;v);

and � u is the coef�cient forunary terms, where

� u = lu (q) � lu (pu) + f u (d(p�
u ; q) � d(p�

u ; pu))

+
X

v2 U

(f u;v d(q; pv) + f v;u d(q; pu) � f u;v d(pu ; pv))

+ (m + 1) � q � yu � pu mpu + � q � yu � pu ;

and� is simply a constant, which can actually be omitted from
the graph construction as it has no impact on the expansion
decisions. For eachu 2 U+ , we add an edge from sources to
nodeu with weight � u . Similarly, for eachu 2 U � , we add
an edge from nodeu to the sinkt with weight j� u j. For each
interacting user pairu; v, we add an edge fromu to v with
weight � u;v . The resultant graphG is illustrated in Figure 4.

The placement of SEs now can be obtained by computing
the minimums-t cut on G by employing the Edmons-Karp
max-�ow algorithm. Speci�cally, we place the SEs after the
expansion move according to the following rule.

pq
u ,

(
q if link s-u is in the cut;

pu otherwise:

Theorem 2 (Correctness). Solving the minimization problem
with objectiveE q is equivalent to obtaining the minimums-t
cut of graphG as long as for any pair of interacting users
u; v 2 U it satis�es �(pu ; pv ; q) � � q + � pu R u;v =f u;v .

Proof. We �rst show the feasibility of obtaining the minimum
s-t cut on the graphG. Through the graph construction we

know that given an arbitraryE q there always exists a graphG.
However, the minimums-t cut can be computed in polynomial
time only if all the edge weights are nonnegative. For� u and
ap, this constraint follows in nature, while� u;v � 0 is satis�ed
if we have�(pu ; pv ; q) � (� q + � pu R u;v)=f u;v .

Now we show the equivalence. For each edge cloudp 6= q,
cost ap is counted as long as there exists one edge in set
f (u; p) ju2 U;p 2 P nqg [f (p; t)g being contained in the cut,
meaning that there existsu 2 Up such thatxu = 0 . Thanks
to the auxiliary variablezp, only edgep-t will be included in
the cut if there are more than one user that satis�esxu = 0 ,
contributing only a cost ofap to E q. For any pair of nodesu
andv in graphG, the pairwise cost� u;v contributes toE q if
and only if xu = 0 andxv = 1 . This corresponds to the case
that edge(u; v) is contained in the minimums-t cut, where
u is assigned to thes-component andv is assigned to thet-
component. For anyu 2 U+ , the unary cost is counted if and
only if the cut contains edges-u, meaningxu = 1 . Similarly,
for any u 2 U � , the unary cost is counted if and only if the
cut contains edgeu-t, meaning thatxu = 0 .

We can still construct a graph and solve the corresponding
minimums-t cut problem on the graph when Theorem 2 does
not hold [23]. The graph construction process is explained in
the following. Recall that in expression (11), for those edge
cloud pairsu; v that satisfy Theorem 2, we have� u;v � 0;
for the others, we have� u;v < 0. The problem is with those
terms with� u;v < 0 since edge weights on the graph should
be nonnegative in order for the graph cut to be ef�ciently
computed. To handle this situation, for the terms� u;v �xu xv

with � u;v < 0 we carry out the following transformation

� u;v �xu xv = � � u;v xu (1 � �xv) � � u;v �xv + � u;v :

Note that after this transformation, we are able to incorporate
the term� u;v �xu xv into the graph by introducing new nodes
�u which represent�xu and edges with weights� � u;v > 0
between them, and edges from these nodes to nodeu with
weight � � u;v > 0. The constant term� u;v is merged into
� in expression (11). In every expansion move we solve the
minimum s-t cut problem on this new graph and determine
the placement of the SE for each useru 2 U according to the
following rule:

pq
u ,

8
><

>:

q if xu = 1 and �xu = 0 ;

pu if xu = 0 and �xv = 1 ;

undetermined otherwise:

For those undetermined SEs, the graph cut solution produces
contradicting decisions onxu and �xu and thus, it is not able
to dictate their placement out from the two choices. Therefore,
we carry out an extra procedure to place those undetermined
SEs such that the total cost can further be reduced: for each
undetermined SE, we setpq

u = q if placing it to q would bring
cost reduction compared to keeping it atpu .

(a) Los Angeles (b) New York City

Fig. 5. Location of Starbucks shops (i.e., location for envisioned edge clouds)
and distribution of Twitter users in the selected two cities.

D. Discussion for Online Cases

So far, the ITEM algorithm works only for the static (of�ine)
scenario. To handle online cases where placement decisions
need to be updated following user movements, we assume a
time-slotted system and we consider that a user has moved
if the user switches from one AP to another. Note that the
granularity of a time slot can be at the level of minutes due to
the fact that users in social VR applications usually move at a
walking speed and small movements will have no impact on
the selection of APs, as a result of which no reoptimization is
required. Keeping in mind that unexpected service interruption
for unmoved users should be minimized, the design of the
online algorithm is as follows: Denote the set of users that
have moved as~U in each time slot. At the beginning of each
time slot we �rst incorporate the migration overhead into the
placement cost for users in~U according to the current locations
of their SEs. Then, we carry out ITEM where we modify the
expansion move by trimming the objective functionE q where
we plug in the decisionsxu = 0 for all u 2 U n ~U. Finally, we
place the SEs of usersu 2 ~U according to the minimum graph
cut solution; the placement for other users remain unchanged.

IV. EVALUATION

With real-world data we validate the performance of ITEM
for both of�ine and online cases.

A. Of�ine Performance

Dataset. We obtain a social network dataset by crawling
Twitter website. The dataset contains a Twitter social graph as
well as user locations in GPS coordinates. We select two major
cities in the U.S., namely Los Angeles and New York City, and
we prune the dataset keeping the users from the two cities. The
two cities have quite different user distribution which is more
uniform in Los Angeles and is more concentrated in New York
City (cf. Figure 5). For the locations of envisioned edge clouds,
we decide to use the locations of the Starbucks due to the fact
that Starbucks shops in a city usually can achieve a decent
coverage for users. In addition, the distribution of Starbucks
shops actually follows the population density, making them
perfect locations for edge cloud deployment in the future.

The dataset pruned for Los Angeles (denoted by Twitter-
LA) contains 7553 users in total. We keep the relationship

0 0.2 0.4 0.6 0.8 1
Proportion of Top Interactive Users

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

of
 In

te
ra

ct
io

ns

Read-LA
Write-LA
Read-NYC
Write-NYC

(a) CDF of user interaction

0 0.2 0.4 0.6 0.8 1
Proportion of Involved Neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

of
 U

se
rs

Read-LA
Write-LA
Read-NYC
Write-NYC

(b) CDF of involved neighbors

Fig. 6. Distribution of user interaction (i.e., read and write) in the synthesized
data. (a) shows that they � 100% of interactions are fromx � 100% most
interactive users. (b) shows thaty � 100% of users involve at mostx � 100%
of her neighbors in her interactions.

of the users as is in the Twitter social graph. Although the
frequency of user interaction is not available with the used
dataset, we can actually synthesize it following the real-world
distributions revealed by [19]. The CDFs of the syntheti-
cally generated frequencies of user interaction (including both
“read” and “write”) are depicted in Figure 6(a). We obtain
the locations of all the Starbucks shops in the city of Los
Angeles and there are in total 105 shops considered, as shown
in Figure 5(a). We assume that each Starbucks shop will be
equipped with an edge cloud that is attached to its AP. The
network delay between any two Starbucks APs is measured
by their geographical distance. We assume that each user is in
the vicinity of the Starbucks shop that is closest to her.

The dataset pruned for New York City (denoted by Twitter-
NYC) contains 6068 users and we synthesize the frequency of
user interaction following the same procedure as above (see
Figure 6(b)). The number of considered Starbucks shops in
New York is 117 in total, as illustrated in Figure 5(b).

Settings. Our implementation of ITEM is based on a max-
�ow implementation detailed in [24]. The activation cost for
each of the edge clouds is generated randomly following a
uniform distribution. For the placement cost, we assume that
there are three different price levels and the ratio between the
base prices of adjacent levels is set to 2. This is to represent
the heterogeneity in the cost of using an edge cloud in different
areas in the city. The actual placement price for each user
placing her SE on an edge cloud is generated following
a normal distribution with the averagebase and standard
deviation0:5� base. The communication frequencyf u of each
user is set to be the sum of frequency of access originated
from useru. For the colocation cost, we randomly generate the
coef�cients following a uniform distribution. We normalize the
four types of cost to the range(0; 1] and we set the parameters
such that all the costs share equal importance. We �rst compare
with two baseline solutions of interest: Random (randomly
generated placement) and Greedy (the greedy placement where
SEs are placed with closest proximity). To further understand
the impact of ITEM on different types of cost, we also compare
three different ITEM-based solutions: ITEM-PLAC (with only
the placement cost optimized), ITEM-PLAC-PROX (with both
the placement and the proximity cost optimized), and ITEM-
OVERALL (with all the costs optimized).

Results. The performance of ITEM, compared with Ran-

Los Angeles New York City
0

0.5

1

1.5

2

2.5

3

3.5

4
R

at
io

Random
Greedy
ITEM

(a) Relative cost ratio

1 2 3 4 5 6 7 8 9 10 11 12
Number of Iterations

1

1.5

2

2.5

3

3.5

4

R
at

io

LA-1
LA-2
LA-3
LA-4
LA-5
NYC-1
NYC-2
NYC-3
NYC-4
NYC-5

(b) Convergency
Fig. 7. Performance evaluation on relative cost ratio and converging speed.

�� �� �� �� �� �� �� �� ��
��

������

��

������

��

������

��

R
at

io

ITEM-PLAC
ITEM-PLAC-PROX
ITEM-OVERALL

(a) Los Angeles

�� �� �� �� �� �� �� �� ��
��

������

��

������

��

������

��
R

at
io

ITEM-PLAC
ITEM-PLAC-PROX
ITEM-OVERALL

(b) New York City
Fig. 8. Total cost breakdown and impact of ITEM on each cost type.

dom and Greedy, is validated in Figure 7(a). All the results
are obtained by averaging �ve independent runs and are
normalized to the results of ITEM. As we can see that, ITEM
outperforms both Random and Greedy as expected and the cost
reduction achieved by ITEM can be150% when compared
with Random and100% when compared with Greedy. This
is due to the fact that Random does not consider any of the
costs, while Greedy only minimizes part of the proximity cost
(from the user to her SE). Figure 7(b) shows the converging
speed of ITEM in both the Twitter-LA and the Twitter-NYC
scenarios with �ve independent runs each. In general, ITEM
converges very fast; it reduces the cost signi�cantly in the �rst
few iterations and converges within 10 iterations in most cases.

Figure 8 illustrates the breakdown of the total cost and
studies the impact of ITEM on each cost type. We observe
that ITEM-PLAC minimizes the placement costEL , while
incurring large activation costEA and proximity costED

as expected. Surprisingly, the colocation costEC is not
signi�cant. This is mainly because when minimizing the
placement cost, SEs are spread out among the edge clouds,
which is also favorable to the colocation costEC sinceEC

is characterized with a super-linear function. ITEM-PLAC-
PROX tries to minimize both the placement cost and the
proximity cost. As we can see that ignoring the colocation
cost EC can be very problematic asEC is extremely high
(12� more) in the solution by ITEM-PLAC-PROX. Overall,
balancing the four types of cost gives the best performance
to ITEM. The results con�rm our motivation thatall the four
types of cost are critically important and should be optimized
simultaneously in an edge computing system, which is the
major contribution of this paper.

B. Online Performance

Dataset and settings. For the online case, mobility is of
concern. We use the Rome Taxi dataset and synthesize social

10 20 30 40 50 60
Time (min)

1

1.4

1.8

R
at

io

Performance Comparison

Random
Greedy
ITEM

0 10 20 30 40 50 60
Time (min)

1.1

1.15

1.2

C
os

t

0

0.1

0.2

M
ob

ili
ty

Impact of Mobility on ITEM

ITEM
Mobility

Fig. 9. Performance comparison and impact of mobility in online cases. (The
upper plot is normalized by the cost of ITEM, and hence the ratio is always
one for ITEM. The actual cost of ITEM �uctuates over time as shown in the
lower plot.)

networks with �tted user interactions. We choose a 6-hour
period (15h to 20h on date Feb 12, 2014) from the dataset.
The number of users varies from hour to hour but is generally
around 300 during the considered time period. The users are
moving around the city over time and the time granularity
is set to one minute. We simulate a social graph on these
users following a power-law distribution with exponent 2.5 and
we generate the frequency of user interaction using the same
approach as for Twitter-LA. We envision an edge computing
system with15 edge clouds that are deployed in the city of
Rome and the locations of the edge clouds are chosen from
the major metro stations in Rome [11].

We implement a discrete-time simulator where at the begin-
ning of each time slot (e.g., each minute here) we obtain the
set of users that have moved and then, we invoke the ITEM
algorithm on those users to obtain new placement decisions.
We use the above mentioned Rome Taxi dataset and other
parameters that are generated following the same settings as
in the of�ine case to feed the simulator. We then compare the
results with that of Random as well as of Greedy.

Results. Figure 9 depicts the results for online performance
evaluation. The experiments are done independently for 6
hours as described in the settings. We only show the hour of
18 as all tests in different hours show similar behaviors. All
the values in the plots are averaged among �ve independent
runs. The values in the upper plot are normalized to the values
obtained by ITEM. As we can see that ITEM outperforms both
Random and Greedy as expected and can achieve an overall
cost reduction of around30% under any circumstances in the
simulated scenario. In the lower plot, we explore the impact
of user mobility to the performance of ITEM, where we show
the costs obtained by ITEM normalized to the smallest value
we have seen from the solutions of ITEM and the curve of
user mobility ratio measured by the ratio between the number
of moved users and of all users. As we can see that, the
performance of ITEM is quite stable (1:1� 1:2� the minimum)
in general and most of the time a positive correlation between
the cost of ITEM and the mobility ratio can be observed, i.e.,
ITEM performs slightly better with lower mobility. This is due
to the fact that the online version of ITEM only reoptimizes

the placement for users that have moved. With a small mobility
ratio, the system remains mostly unchanged and ITEM tries
to control the QoS interruption on the unmoved users.

V. RELATED WORK

Data placement for online social networks. A lot of
work has been carried out on optimizing cost or performance
via data placement or replication for online social networks
[13]–[16]. Jiao et al. propose cosplay, a cost effective data
placement policy that can guarantee QoS in online social
networks [13]. Later, they further investigate the problem
by considering multiple objectives [15]. Yu and Pan propose
an associated data placement (ADP) scheme which aims to
improve the colocation of associated data and localized data
serving [14]. Recently, Zhou et al. explore the problem of joint
placement and replication of social network data with the goal
of minimizing network traf�c [16].

Resource management in edge computing.In the pres-
ence of multiple edge clouds, resource management is of high
importance as it directly dictates service quality and system
ef�ciency. Research efforts have been made mostly on resource
allocation and job scheduling [5]–[11]. Jia et al. study the
load balancing among multiple edge clouds in [6]. Tong et
al. discuss workload placement for delay minimization in a
hierarchical edge computing architecture [7]. Wang et al. [8]
and Urgaonkar et al. [9] focus on stochastic frameworks for
optimizing dynamic workload migration based on Markov
Decision Processes (MDPs) and Lyapunov optimization. Re-
cently, Tan et al. study online job dispatching and scheduling
in edge clouds [10]. Wang et al. investigate online mobility-
oblivious resource allocation for edge computing [11].

In short, none of the existing models are able to characterize
the joint impact of user interactions in social VR applications
and resource contention in edge clouds for service placement,
which is captured in our model. Moreover, we incorporate the
economic effects on activating and using edge clouds.

VI. CONCLUSION

In this paper we conduct the �rst formal study of the
service entity placement problem for social VR applications
in edge computing. We characterize the major challenges with
a comprehensive cost model and propose a novel algorithm
based on iteratively solving a series of minimum graph cuts.
The algorithm is �exible and is applicable in both of�ine and
online cases. The performance of the proposed algorithm is
con�rmed by extensive experiments. As the intersection of
VR and edge computing is gaining more and more attention,
the solution provided in this paper will serve as a baseline
and will foster future exploration in this direction. Several
research questions are still open including developing online
algorithms for SE placement with edge cloud recon�guration
cost included. We leave them to future work.

ACKNOWLEDGEMENT

This work was partially funded by the German Research
Foundation (DFG) and the National Nature Science Founda-
tion of China (NSFC) joint project under Grant No. 392046569

(DFG) and No. 61761136014 (NSFC), and the DFG Collab-
orative Research Center (CRC) 1053 – MAKI. Ting He was
sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defense under Agreement Number W911NF-16-3-
0001. Jun Li was funded by the National Science Foundation
under Grant No. 1564348. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the of�cial policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defense or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] ETSI MEC-IEG, “Mobile edge computing (mec); service scenarios.”
[2] Open Edge Computing. http://openedgecomputing.org.
[3] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj, “SOUL: an edge-cloud

system for mobile applications in a sensor-rich world,” inSEC, 2016.
[4] J. Cho, K. Sundaresan, R. Mahindra, J. E. van der Merwe, and

S. Rangarajan, “ACACIA: context-aware edge computing for continuous
interactive applications over mobile networks,” inCoNEXT, 2016.

[5] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task
assignment and scheduling in mobile edge clouds,” inICNP, 2016.

[6] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” inINFOCOM, 2016.

[7] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” inINFOCOM, 2016.

[8] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” inNetworking,
2015.

[9] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
PEVA, vol. 91, pp. 205–228, 2015.

[10] H. Tan, Z. Han, X.-. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge clouds,” inINFOCOM, 2017.

[11] L. Wang, L. Jiao, J. Li, and M. M̈uhlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” inICDCS, 2017.

[12] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, “Scaling social
media applications into geo-distributed clouds,”ToN, vol. 23, no. 3, pp.
689–702, 2015.

[13] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social
networks on geo-distributed clouds,” inICNP, 2012.

[14] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” inINFOCOM, 2015.

[15] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” inINFOCOM, 2014.

[16] J. Zhou and J. Fan, “JPR: exploring joint partitioning and replication
for traf�c minimization in online social networks,” inICDCS, 2017.

[17] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion
mapping in a cloud,” inPODC, 2011.

[18] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
ToN, vol. 20, no. 1, pp. 206–219, 2012.

[19] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” inEuroSys, 2009.

[20] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine
performance: challenges and approaches,”SIGMETRICS PER, vol. 37,
no. 3, pp. 55–60, 2009.

[21] J. Krarup and P. M. Pruzen, “The simple plant location problem: Survey
and synthesis,”Eur. J. Oper. Res., vol. 12, pp. 36–81, 1983.

[22] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” inCVPR, 2010, pp. 2173–2180.

[23] V. Kolmogorov and C. Rother, “Minimizing nonsubmodular functions
with graph cuts: a review,”IEEE TPAMI, vol. 29, no. 7, pp. 1274–1279,
2007.

[24] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-�ow algorithms for energy minimization in vision,”IEEE
TPAMI, vol. 26, no. 9, pp. 1124–1137, 2004.

